Density and non-density of Cc∞↪Wk,p on complete manifolds with curvature bounds

Autor: Honda S., Mari L., Rimoldi M., Veronelli G.
Přispěvatelé: Honda, S, Mari, L, Rimoldi, M, Veronelli, G
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Popis: We investigate the density of compactly supported smooth functions in the Sobolev space Wk,p on complete Riemannian manifolds. In the first part of the paper, we extend to the full range p∈[1,2] the most general results known in the Hilbertian case. In particular, we obtain the density under a quadratic Ricci lower bound (when k=2) or a suitably controlled growth of the derivatives of the Riemann curvature tensor only up to order k−3 (when k>2). To this end, we prove a gradient regularity lemma that might be of independent interest. In the second part of the paper, for every n≥2 and p>2 we construct a complete n-dimensional manifold with sectional curvature bounded from below by a negative constant, for which the density property in Wk,p does not hold for any k≥2. We also deduce the existence of a counterexample to the validity of the Calderón–Zygmund inequality for p>2 when Sec≥0, and in the compact setting we show the impossibility to build a Calderón–Zygmund theory for p>2 with constants only depending on a bound on the diameter and a lower bound on the sectional curvature.
Databáze: OpenAIRE