Synthesis and self-assembly of biocompatible amphiphilic block copolymers

Autor: BERTANI, DANIELA
Přispěvatelé: Bertani, D, SIMONUTTI, ROBERTO
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Popis: Il drug delivery attira molto interesse a causa della necessità di migliorare efficienza e selettività delle terapie farmacologiche. Capsule polimeriche per i farmaci sono una strategia promettente per prolungarne i tempi di circolazione, migliorarne il trasporto nel sangue, e modularne nel tempo il rilascio. In questo ambito, l’organizzazione spontanea dei copolimeri a blocchi (CB) in nanoparticelle (NP) compartimentalizzate in ambiente acquoso è uno strumento potente per la fabbricazione di sistemi per il drug delivery. In questa tesi vengono investigati la sintesi e l’autoassemblaggio (AS) controllati di una serie di CB anfifilici contenenti blocchi idrofilici biocompatibili e biomimetici. Nel Cap. 3 viene presentato un quadro completo del comportamento di AS di PS-b-PDMA in H2O da DMF. E’ stato preparato un set di campioni con pesi molecolari compresi fra 10 kDa e 57 kDa e fPDMA comprese fra 0.06 e 0.75, e le NP sono state caratterizzate con DLS, TEM, CEM, CET, SEM e AFM. Viene proposta una mappa morfologica, dove le morfologie dominanti sono state correlate con la caratteristiche chimiche dei CB. In particolare, quando fPDMA < 0.15, è stata osservata la formazione di particelle porose con diametri fino ad alcuni micron che assumono una fase spugnosa, stabile alla liofilizzazione. Nel Cap. 4, una serie di CB biocompatibili e biodegradabili di PEO-b-PLA sono stati sintetizzati tramite ROP controllata di lattide catalizzata da DBU. Il focus di ricerca era sull’effetto del solvente non selettivo sull’AS: NP ottenute da ACT, DX, THF e DMF sono state analizzate con DLS, CEM e CET. Dimensioni e PDI aumentavano nell’ordine ACT < DX < THF ~ DMF. Le NP sono state classificate in tre cluster: micelle (piccolo raggio, basso PDI), polimersomi (medio raggio, medio PDI), e micelle composte (grande raggio, grande PDI). Mentre ACT e DX portano alla formazione preferenziale di micelle, il THF permette di accedere a uno spazio morfologico molto più ampio. Infine, la DMF favorisce fenomeni di aggregazione di secondo ordine. Nel Cap. 5 vengono valutati la sintesi controllata, la funzionalizzazione terminale e la formazione di di- e triblocchi di polimeri a base di PEtOx biocompatibile tramite una combinazione di ROP e RAFT. Un blocco di PEtOx25 è stato sintetizzato con successo tramite CROP di 2-etil-2-ossazolina con buon controllo; è stato poi usato come macroCTA per la polimerizzazione sequenziale di Sty e t-BA per ottenere il copolimero a tre blocchi PEtOx-b-PS-b-PtBA. Vengono presentati risultati preliminari sul SA in etanolo come solvente selettivo per i blocchi di PEtOx e PtBA, ma non PS. Nel Cap. 6 è stato studiato l’effetto morfogenico di ACT, DX e DMF sul SA di PS-b-PDMA e PEO-b-PLA usando il rotore molecolare AzeNaph-1 come sonda di viscosità per il monitoraggio in situ dell’aggregazione dei CB. L’evoluzione della viscosità in funzione del contenuto di H2O in PS-b-PDMA è simile sia in DMF che DX: all’aggiunta di H2O, le catene di PS collassano rapidamente, formando core prevalentemente vetrosi. Coerentemente, il DLS mostra poca variazione di dimensioni delle NP fra i due solventi. Anche PEO-b-PLA forma domini vetrosi in DMF/H2O, ma non in ACT o DX. Al contrario, la viscosità locale del core è molto minore in ACT e DX che in DMF su tutto il range di frazione di H2O, ed è dipendente dal tempo. Questa aumentata mobilità molecolare promuove la differenziazione delle NP formate. Infine, nel Cap. 7 viene esplorato l’AS indotto da polimerizzazione di CB anfifilici basati su glicopolimeri. Tre campioni di PAGA con DP = 25, 50 e 75 sono stati polimerizzati in H2O/MeOH tramite RAFT, con ottimo controllo. L’ottimizzazione delle condizioni di reazioni ha permesso di usare PAGA25 e PAGA50 come stabilizzanti e macroCTA per l’estensione di catena con BA in H2O/MeOH. Il controllo sulla polimerizzazione è stato basso, ma sono state ottenute NP sferiche, stabili e monodisperse. Drug delivery is a trending topic in current research due to the need to improve therapeutic efficiency and selectivity. Polymeric encapsulants for drugs are a promising strategy to prolong circulation times, enhance hydrophobic drug transport through the blood stream, and modulate drug release over time. In this field, amphiphilic block copolymers’ (BCs) spontaneous organization in compartimentalized nanoparticles (NPs) in water is a powerful tool for the fabrication of drug delivery systems. In this Doctoral thesis, the controlled synthesis and self-assembly (S-A) of a series of amphiphilic BCs containing biocompatible, stealthy hydrophilic blocks were investigated. Controlled polymerization techniques were employed to prepare copolymers with narrow molecular weight distributions. In Chapter 3, a complete picture of the previously unreported S-A behaviour of PS-b-PDMA in water from DMF is drawn. A comprehensive sample set spanning molecular weights from 10 kDa to 57 kDa and hydrophilic volume fractions fPDMA from 0.06 to 0.75 was prepared by sequential RAFT, and NPs were characterized by DLS, TEM, CEM, CET, SEM, and AFM. A morphology map is proposed, where predominant morphologies were correlated with BC chemical characteristics. In particular, stable hollow particles with diameters up to several microns when fPDMA drops below 0.15 are formed. Micron-large porous particles exhibiting a sponge phase which can withstand lyophilisation were observed. In Chapter 4, a series of biocompatible and biodegradable PEO-b-PLA BCs were synthesized by controlled ROP of lactide catalyzed by non-toxic DBU. The research focus was on the effect of the non-selective solvent on S-A: NPs obtained from ACT, DX, THF, DMF were analyzed by DLS, CEM and CET. Both size and PDI increased in the order ACT < DX < THF ~ DMF. NPs were classified into three clusters, labeled micelles (small size, low PDI), polymersomes (medium size, medium-low PDI) and large compound micelles (large size, large PDI). While ACT and DX yielded mostly micelles, THF allowed to access a much broader morphological space. Finally, DMF favoured second-order aggregation phenomena. In Chapter 5, controlled synthesis, chain-end functionalization and di- and triblock formation of biocompatible PEtOx-based polymers by a combination of ROP and RAFT techniques were evaluated. Biocompatible PEtOx25 blocks were successfully synthesized by CROP of 2-ethyl-2-oxazoline with good control. PEtOx25 was used as a macroCTA for the sequential polymerization of a Sty and tBA to yield a PEtOx25-b-PS50-b-PtBA25 triblock copolymer. Preliminary results on S-A in ethanol as a selective solvent for both PEtOx and PtBA, but not for PS, are presented. In Chapter 6, the morphogenic effect of ACT, DX and DMF on PS-b-PDMA and PEO-b-PLA S-A was studied using molecular rotor AzeNaph-1 as a local viscosity probe for the in situ monitoring of BC aggregation. Evolution of viscosity as a function of water content in PS-b-PDMA was similar both in DMF and DX: upon the addition of H2O, PS chains rapidly collapsed in NP cores, which were largely glassy. Consistently, DLS shows little variation on particle size between the two solvents. PEO113-b-PLAx also formed glassy domains in DMF/H2O, but not in ACT or DX. Contrarily, local core viscosity was much lower in ACT and DX than in DMF over the whole H2O fraction range, and was time-dependent. This increased chain mobility promoted the differentiation of NP formation. Finally, in Chapter 7, polymerization-induced S-A of glycopolymer-based amphiphilic BCs was investigated. Three PAGA samples with DP = 25, 50 and 75 were polymerized in H2O/methanol mixture by RAFT, with remarkable control. Optimization of reaction conditions allowed the use of PAGA25 and PAGA50 as stabilizers and macroCTAs for chain-extension with n-butylacrylate (BA) in methanol/H2O environment. Control on the polymerization was poor, but stable and monodisperse spherical NPs were obtained.
Databáze: OpenAIRE