Search for lepton flavour violating τ^+ → µ^+ µ^− µ^+ decay at LHCb and study on MCP-PMT detector for future LHCb Upgrade

Autor: CAPELLI, SIMONE
Přispěvatelé: Capelli, S, CALVI, MARTA
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Popis: La parte principale della mia attività di ricerca svolta durante il dottorato consiste nella analisi di dati raccolti dalla collaborazione LHCb del CERN durante il Run2 (dal 2016 al 2018). Lo scopo di questo lavoro consiste nella ricerca del decadimento del leptone τ in tre muoni (τ^+→µ^+µ^-µ^+) Questo decadimento raro non ancora osservato violerebbe la conservazione del sapore leptonico, una quantità conservata accidentalmente nel Modello Standard (SM). Nell'estensione minimale del Modello Standard che include neutrini massivi, il rateo di decadimento atteso B(τ^+→µ^+µ^-µ^+) è previsto essere dell'ordine O($10^{-55}$), ben al di sotto del livello di sensibilità degli attuali e prossimi futuri esperimenti. Vi sono tuttavia teorie di Fisica oltre il Modello Standard (BSM) per le quali è previsto un aumento del rateo di decadimento di τ^+→µ^+µ^-µ^+ fino a valori O($10^{-10}$). A oggi questo processo non è ancora stato osservato direttamente, ne da esperimenti a collisori leptonici (BaBar, Belle) ne a collisori adronici (LHCb), sono stati invece posti limiti superiori, che impongono limiti sempre più stringenti sulle teorie BSM. Una eventuale osservazione di questo decadimento sarebbe un chiaro segnale di nuova Fisica. L'analisi è stata svolta separatamente per ogni anno, utilizzando il decadimento Ds^+→φ(µ^+µ^-)π^+ come canale di riferimento rispetto a cui calcolare il B(τ^+→µ^+µ^-µ^+) in bin dei classificatori. È stato utilizzato il metodo CLs per il calcolo del limite atteso, che risulta essere 1.8(2.2) x10^{-8} al 90%(95%) di C.L. Gli studi di decadimenti molto rari come τ^+→µ^+µ^-µ^+ beneficeranno notevolmente dall'aumento di dati raccolti durante l'attuale Run3 e il prossimo Run4 dal rivelatore recentemente rinnovato. Durante la futura fase di alta luminosità che per l'esperimento LHCb comincerà con il Run5, esso sarà in grado di acquisire una maggiore quantità di dati grazie alla luminosità 10 volte superiore. Per fare questo tuttavia è necessario progettare e sviluppare nuove componenti per rimpiazzare quelle attuali, che non saranno in grado di sostenere le nuove condizioni di funzionamento. Per una parte del mio progetto di dottorato mi sono occupato della caratterizzazione della risposta temporale di un fotomoltiplicatore candidato per l'aggiornamento del Ring Imaging Cherenkov (RICH). Per il futuro upgrade è stato proposto di sfruttare l'informazione temporale delle tracce per ridurre il livello di pile-up. Fotorivelatori basati su MCP sono caratterizzati da una ottima risoluzione temporale, ma il loro impiego ad alti ratei di fotoni è complicato dalla saturazione a cui vanno incontro. Il rate atteso nella fase di alta luminosità è di circa 10MHz/mm$^2$. L'Auratek-Square è uno strumento multianodo a microcanali (MCP-PMT) prodotto da Photek di 53x53 mm con 64x64 anodi raggruppati in 8x8 pixels. Ne è stata caratterizzata la risoluzione temporale in regime di singolo fotone, in funzione della tensione di alimentazione e del rateo di fotoni. Il rivelatore mostra eccellenti performance quando un singolo pixel viene illuminato, mostrando uno sparpagliamento del tempo di transito di circa 100ps FWHM quando esposto a un rateo di fotoni fino a ∼100kHz/mm$^2$. Oltre tale soglia il fotomoltiplicatore satura e la risoluzione temporale peggiora velocemente. È possibile mitigare questo peggioramento riducendo sia la differenza di potenziale presente tra il fotocatodo e l’ingresso del MCP che la differenza di potenziale tra i piani del MCP, lavorando a basso guadagno. La capacità di timing è influenzata anche dal fenomeno di condivisione di carica (charge sharing) tra pixel adiacenti, che porta la risoluzione temporale a circa 170ps FWHM quando l’intera superficie del rivelatore è illuminata e che può risultare una delle sorgenti principali di crosstalk se non viene adeguatamente considerata. The physics analysis has been the primary focus of my research activity during the PhD. Within the CERN LHCb collaboration, I've performed an analysis of data collected during the LHC Run2 (2016, 2017 and 2018). The aim of this work is the search for the decay of the τ lepton into three muons (τ^+→µ^+µ^-µ^+), a decay that would violate the conservation of charged lepton flavour number (cLFV). The lepton flavour is an accidental symmetry of the Standard Model, and without the oscillations of neutrinos such decay would be prohibited. In the Minimal extended Standard Model the branching ratio B(τ^+→µ^+µ^-µ^+) is expected to be O($10^{-55}$), well below current and foreseen experimental sensitivity. Theories of physics beyond the Standard Model predict an enhancement of the τ^+→µ^+µ^-µ^+ decay within present experimental sensitivity O($10^{-10}$). This decay has not been observed to date, only upper limits have been established by B-factories (BaBar, Belle) or by hadron collider experiments (LHCb). The upper limit improvement implies strengthen of the constraints on exotic theories, while an observation of the decay would be a clear signal of New Physics. The analysis is performed separately for each year, and the data is divided into two subsamples depending on the number of muon candidates triggered by the LHCb muon system. Multivariate models are used to distinguish signal and background to enhance the signal sensitivity, and to define correction for data-simulation agreement. The Ds^+→φ(µ^+µ^-)π^+ channel is used as a reference channel to estimate the upper limit on the branching fraction. The expected upper limit is computed with the CLs method and results in 1.8(2.2)x10$^{-8}$ at 90%(95%) C.L.. The τ^+→µ^+µ^-µ^+ is an example of a very rare decay, and the analysis involving such decays will benefit from the increment of statistics that will be collected in the current Run3 and in the following Run4 period of data taking at the upgraded LHCb. The High-Luminosity phase of LHCb, starting with Run5 of the LHC, will provide a further boost to the amount of available data. The LHCb detector will need to undergo a second upgrade, to cope with the x10 increase of luminosity. Numerous studies and R&D projects are currently working on the development of technologies for the future detectors of LHCb. A part of my PhD project was devoted to work on a candidate photodetector for the upgraded Ring Imaging Cherenkov (RICH). I've characterized the timing performance of a multianode microchannel plate photomultiplier (MCP-PMT) in single photon regime. For the second upgrade it has been proposed to improve particle identification performance exploiting the use of precise timing information to cope with the increased pileup. MCP-based devices show excellent time resolution, but their use is critical due to saturation at rate above ~100kHz/mm$^2$. The expected rate that the future devices will have to stand is ~10MHz/mm$^2$. The Auratek-Square MCP-PMT produced by Photek is 53x53mm device with 64x64 anodes grouped into 8x8 pixels. The dependence of the time resolution from the bias voltage and the photon rate was assessed. When operating as single photon counter at low photon rate and with a single pixel illuminated it shows a transit time spread (jitter) of ~100ps FWHM, saturating at high rate, above ~100kHz/mm$^2$. Lowering the bias voltage between the photocathode and the MCP input or between the MCP slabs can reduce the worsening of the time resolution at high rate. The charge sharing between the neighbouring pixels can degrade the time resolution to ~170ps FWHM when the entire pixel area is illuminated, and could become a major crosstalk source if not accounted for.
Databáze: OpenAIRE