Autor: |
Da Silva, Afitz, Dort, J., Orfi, Z., Pan, X., Huang, S.J., Kho, I., Heckel, E., Muscarnera, G., Vliet, P.P. van, Sturiale, L., Messina, A., Romeo, D.A., Karnebeek, C.D.M. van, Wen, X.Y., Hinek, A., Molina, T., Andelfinger, G., Ellezam, B., Yamanaka, Y., Olivos, H.J., Morales, C.R., Joyal, J.S., Lefeber, D.J., Garozzo, D., Dumont, N.A., Pshezhetsky, A.V. |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Science Advances, 9, 26 |
Popis: |
Contains fulltext : 294352.pdf (Publisher’s version ) (Open Access) Deleterious variants in N-acetylneuraminate pyruvate lyase (NPL) cause skeletal myopathy and cardiac edema in humans and zebrafish, but its physiological role remains unknown. We report generation of mouse models of the disease: Npl(R63C), carrying the human p.Arg63Cys variant, and Npl(del116) with a 116-bp exonic deletion. In both strains, NPL deficiency causes drastic increase in free sialic acid levels, reduction of skeletal muscle force and endurance, slower healing and smaller size of newly formed myofibers after cardiotoxin-induced muscle injury, increased glycolysis, partially impaired mitochondrial function, and aberrant sialylation of dystroglycan and mitochondrial LRP130 protein. NPL-catalyzed degradation of sialic acid in the muscle increases after fasting and injury and in human patient and mouse models with genetic muscle dystrophy, demonstrating that NPL is essential for muscle function and regeneration and serves as a general marker of muscle damage. Oral administration of N-acetylmannosamine rescues skeletal myopathy, as well as mitochondrial and structural abnormalities in Npl(R63C) mice, suggesting a potential treatment for human patients. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|