Popis: |
Predictive coding model of perception postulates that the primary objective of the brain is to infer the causes of sensory inputs by reducing prediction errors (i.e., the discrepancy between expected and actual information). Moreover, prediction errors are weighted by their precision (i.e., inverse variance), which quantifies the degree of certainty about the variables. There is accumulating evidence that the reduction of precision‐weighted prediction errors can be affected by contextual regularity (as an external factor) and selective attention (as an internal factor). However, it is unclear whether the two factors function together or separately. Here we used electroencephalography (EEG) to examine the putative interaction of contextual regularity and selective attention on this reduction process. Participants were presented with pairs of regular and irregular quartets in attended and unattended conditions. We found that contextual regularity and selective attention independently modulated the N1/MMN where the repetition effect was absent. On the P2, the two factors respectively interacted with the repetition effect without interacting with each other. The results showed that contextual regularity and selective attention likely affect the reduction of precision‐weighted prediction errors in distinct manners. While contextual regularity finetunes our efficiency at reducing precision‐weighted prediction errors, selective attention seems to modulate the reduction process following the Matthew effect of accumulated advantage. peerReviewed |