Popis: |
Kabelbaserede brøndindgreb i højtemperatur brønde er en af de største udfordringer i olie- og gasindustrien i dag. De høje temperaturer nede i hullet, som kan nå op på 200 °C, reducerer levetiden for de elektriske komponenter i de kabelbaserede robot værktøjer indtil nedbrud. En mulig løsning på overophedningen af elektronikken er aktive kølesystemer, idet disse ville kunne holde de følsomme elektronikkomponenter ved tålelige temperaturer imens de opererer i varme omgivelser. Dette arbejde præsenterer design, konstruktion og test af en aktivt kølet down-hole elektroniksektion, som kan køle de kritiske elektriske komponenter til under 175 °C imens den opererer i omgivelser på 200 °C, som nede i en brønd. Efter en undersøgelse af forskellige køleteknikker og den termiske karakterisering af de elektriske komponenter der benyttes i brønden blev det besluttet at benytte termoelektriske kølere. Disse termoelektriske kølere implementerede et nyt koncept til varmestyringen i forhold til tidligere arbejder, således at det valgte design kombinerer både aktive og passive køleteknikker med det mål at opnå en effektiv varmestyrring, samtidig med at bibeholde værktøjets kompakthed og at undgå brugen af bevægelige dele. Det endelige design af prototypen som kunne holde den temperatur følsomme elektronik under 170 °C imens den opererede ved over 200 °C i mere end 200 timer blev udviklet med topologioptimering kombineret med en finite element model. Effektiv elektrisk integration af kølesystemet i down-hole værktøjet blev også studeret og et pulsbredde-modulationskredsløb blev udviklet for at tilpasse down-hole strømforsyningen til en passende spænding til den termoelektriske køler. Implementeringen af det aktive kølesystem blev understøttet af et studie af den termiske vekselvirkning imellem down-hole værktøjet og omgivelserne i brønden, hvilket var relevant for at kunne definere varmeafgivelsen. I mangel af information i den videnskabelige litteratur blev der designer og testet en down-hole sensor der kunne kvantificere varmeoverførselshastigheden imellem værktøjet og brøndboringen eksperimentelt. Konceptet blev bevist og sensoren kalibreret i en laboratorie flow løkke med god overensstemmelse imellem eksperimentelle resultater og modelforudsigelser. De gennemsnitlige og maksimale afvigelser imellem de målte og forudsagte varmeoverføringskoefficienter var på henholdsvis 3% og 10%. Wireline interventions in high temperature wells represent one of today’s biggest challenges for the oil and gas industry. The high wellbore temperatures, which can reach 200 °C, drastically reduce the life of the electronic components contained in the wireline downhole tools, which can cause the intervention to fail. Active cooling systems represent a possible solution to the electronics overheating, as they could maintain the sensitive electronics at a tolerable temperature, while operating in hotter environments. This work presents the design, construction and testing of an actively cooled downhole electronics section, which is able to cool the critical electronics below 175 °C while operating at 200 °C. After the investigation of several cooling techniques and the thermal characterization of the studied downhole electronics, thermoelectric coolers were chosen to implement a novel concept of heat management for downhole tools. The chosen design combined active and passive cooling techniques aiming at efficient thermal management, preserving the tool compactness, and avoiding the use of moving parts. Topology optimization was used, in combination with a finite element model of the system, to develop the final design of an actively cooled prototype, which was able to continuously maintain the temperature-sensitive electronics below 170 °C, while operating at 200 °C for more than 200 hours. Effective electrical integration of the cooling system in a wireline downhole tool was also studied, and a power-width-modulation circuit was developed to adapt the downhole power source to a suitable voltage for the thermoelectric cooler. The implementation of the active cooling system was supported by the study of the thermal interaction between the downhole tool and the well environment, which was relevant to define the heat rejection conditions. Given the lack of information from the scientific literature, a downhole sensor that could experimentally quantify the heat transfer rate occurring between the tool and the wellbore was designed and tested. The concept was proved and the sensor calibrated in a laboratory flow loop. Average and maximum mismatches of 3% and 10%, respectively, were found between the measured and predicted heat transfer coefficients, showing good agreement between experimental results and model forecasts. |