Popis: |
Bæredygtigheden af nye bioteknologier, der søger at lukke kredsen medmuligheder for cirkulære økonomier, er tvivlsom. Mængden af biomasseer begrænset, og forvaltningen af disse ressourcer skal forbedresdramatisk, hvis vi skal sikre en bæredygtig fremtid for kommende generationer.Alt ”bio”, såsom bioprodukter, bioenergi, biokemikalier haren tendens til at blive opfattet som miljømæssigt bedre end deres fossilekolleger. Imidlertid har forskning vist, at dette ikke altid er tilfældet, ogat svaret på spørgsmålet, er ”bio” bæredygtigt, altid er: det kommer anpå.I løbet af dette ph.d.-projekt er bæredygtigheden af forskellige bioraffinaderiindstillinger,der er et resultat af den nye bioteknologiske udvikling,og deres produkter, blevet vurderet ved hjælp af livscyklusvurderings(LCA) -metodologien i specifikke regionale sammenhænge. Måletmed dette projekt er at øge vores forståelse af de variationer og mønstre,der skal inkluderes i vurderingen for at få succes med at identificerebæredygtige bio-muligheder. Til dette formål er der introduceret 3fokusperspektiver med hensyn til opbygning af passende vurderinger.Det territoriale perspektiv, der inkluderer overvejelser, der skal tagesmed hensyn til baggrundssystemet i LCA, inkluderer variabler somjordbrug, forsyning af råvarer og energinettet der forsyner bioteknologierne.I denne sammenhæng kan massestrømningsanalyse dvs. materialestrømmeder går ind og ud af regionen, sammenkobles med LCA.Samtidig kan der frembringes dynamiske opgørelser for at redegøre forændringer i tiden, dvs. ændringer af energinettets kilder i baggrundssystemet.Evalueringen af forskellige systemer i hele dette projekt viste,at den tilføjede information fra en dynamisk energimix er en nødvendigkomponent af fremtidige LCA'er, der enten bruger biomasseressourcereller har energiintensiv behandling. På den anden side er massestrømningsanalysenvelegnet til at henlede opmærksomheden på potentieltpres fra biomasseforsyningssiden, skønt en mere definitiv analyse afændring af arealanvendelse er nødvendig for at undgå potentielle negativepåvirkninger fra biomasseforsyningen. Dette er et globalt spørgsmål,og det bør derfor vurderes med hensyn til de globale konsekvenser.Det tidlige designperspektiv, herunder forgrundsystemet, fokuserer påprocesdesign. Dette henviser til bioteknologier i tidlige udviklingsfaser,f.eks. en laboratorieskala, som kunne drage fordel af en hot-spot vurdering,der kan påpege forbedringsområder for procesdesign til mere miljøvenligeteknologier i en industriel skala. Resultaterne viste, at LCA eri stand til at påpege design hot-spots i bioteknologier på et tidligt stadiumaf udviklingen ved hjælp af en hurtig carbon footprint analyse.Projektet illustrerer, hvordan man bruger procesdesignsoftware, der rutinemæssigtbruges af kemiske/bioteknologiske industrier, sammenmed LCA, til at fremstille flervinkelsvurderinger. Kombinationen harpotentialet til at blive et kraftfuldt værktøj, der vil kunne drage fordelaf det standardiseringsniveau, der allerede er tilgængeligt for LCA-udøvere.Kombinationen af for eksempel teknologisk-økonomiske vurderinger(TEA) og LCA kan føre til procesdesign, som kan optimeresbåde fra en miljømæssig og økonomisk side. Desuden anvendte detteprojekt beslutningsanalysemetoder med flere kriterier (Multi-CriteriaDecision Analysis) for at opnå en klar beslutningsstøtte fra sammensattevurderinger som for eksempel en kombineret TEA-LCA. MCDAmetoderne testet under dette projekt viste sig at være effektive og i overensstemmelsemed hinanden. Imidlertid er der behov for yderligereforskning for at reducere subjektiviteten af vægtningsprofiler og værdiansættelseraf eksternaliteter.Det sidste perspektiv, der analyseres i dette projekt, er produktperspektivet.Nye produkter mangler det dækningsniveau, som konventionelleprodukter har i LCA-databaser. Desuden er funktionaliteten af nye produktertil tider dårligt forstået eller indeholder værdier, der ligger udenfor rammerne af LCA-metodikken, som den er i dag. Der blev identificeretflere vigtige forbedringsområder med hensyn til at øge vores forståelseaf nye produkter og de metodologiske behov, der er nødvendigefor en mere fuldstændig vurdering af disse. Det vigtigste er, at der blevudviklet en ramme, der indbefatter påvirkningerne af plastprodukter påen mere grundig måde, som inkluderer bidraget fra mikroplastik til dannelseaf atmosfærisk støv. Imidlertid er der et presserende behov for atøge vores forståelse af mikroplastik-cyklussen, herunder (men ikke begrænsettil) nedbrydningshastigheder af plast i det naturlige miljø, bedreforståelse af nedbrydningshastighederne for konventionel plast i deponeringog af spildt plast, øget forståelse af makro- og mikroplastiksskæbne og endelig en øget forståelse af hvordan denne type forureningskader menneskers og økosystemets sundhed. Derudover skal værdienaf bionedbrydelige materialer overvejes nøje og der kan være nødvendigat omdefinere denne. Fordi det er sandsynligt, at værdien af bionedbrydeligtmateriale strækker sig ud over LCA-metodens rækkevidde iøkologiske perspektiver, bl.a. biodiversitet og økosystemtjenester, derer dårligt omfattet af LCA.De tre perspektiver der blev undersøgt, og de resultater der blev producereti løbet af dette projekt, vil lette vurderingen af forskellige bioteknologieri deres regions specifikke kontekst. Afhængigt af målet og omfangetaf fremtidige LCA'er, kan de metodologiske elementer, der eridentificeret her, være nødvendige i deres helhed eller delvist. Tværfagligeinteraktioner vil være nøglen til at sikre, at LCA-metodologien fortsættermed at udvikle sig og realisere dens fulde potentiale, så vi i fremtiden,når vi bliver spurgt om ”bio” er bæredygtigt, endelig kan give etentydigt svar. The sustainability of emerging biotechnologies seeking to close the loop with circular economy alternatives is questionable. Biomass resources are finite and management of these resources has to improve dramatically if we are to ensure a sustainable future for coming generations. All things bio, such as bioproducts, bioenergy, biochemicals have a tendency to be perceived as environmentally superior to their fossil counterparts. However, research has shown this is not always the case and that the answer to the question, “is bio sustainable?” is always it depends. During the course of this PhD project the sustainability of various biorefinery setups, which are a result of emerging biotechnological developments,and their products have been assessed with the life cycle assessment (LCA) methodology in specific regional contexts. The aim of this project is to increase our understanding of the variables and patterns that should be included in the assessment in order to succeed in the identification of sustainable bio-options. For this purpose, 3 perspectives of focus were introduced with regards to building appropriate assessments. The territorial perspective, which includes considerations that must be made about the background system in LCA includes variables such as land, feedstock provisioning, and the energy grid supplying the biotechnologies. In this context, mass flow analysis of the regions of interestcan be coupled with LCA i.e. material flows going in and out of the region, and dynamic inventories can be produced to account for changes in time i.e. changing background energy grid mix. The assessment of various systems throughout this project showed that the added information from a dynamic energy mix is a necessary component of future LCAs that either use biomass resources, or have energy intensive processing. On the other hand, the mass flow analysis is useful in drawing attention to potential pressures from the feedstock provisioning side, though a more definitive analysis of land use change is necessary to avoid potential negative impacts from feedstock sourcing. This is a global issue and thus should be assessed taking the consequences at a global scale. The foreground and early design perspective introduced in this project centers around process design, a.k.a. the foreground system. This refers to biotechnologies in early development phases, such as laboratory scale, which could benefit from a hot spot assessment that may point out process design improvement areas for more environmentally friendly technologies at industrial scale. Results showed that LCA is capable of pointing out design hot spots in biotechnologies at an early stage of development by the use of a quick carbon foot printing. The project exemplifies how to utilize process design software that is routinely used by the chemical/biotech industries, together with LCA to produce multi-angle assessments. The combination has the potential to become a powerful tool that would benefit from the level of standardization already available to LCA practitioners. Combining for example, techno-economic assessments (TEA) and LCA can lead to process design, which may be optimized from both an environmental and economic side. Furthermore, this project applied multi-criteria decision analysis methods in order to derive clear decision support from compound assessment such as combined TEA-LCA. The methods of MCDA tested during this project proved effective and were in agreement. However, further research is needed in order to decrease the subjectivity of weighting profiles and valuation of externalities. The last perspective analyzed in this project is the products perspective. Novel products lack the level of coverage that conventional products have in LCA databases. Moreover, The functionality of novel products is, at times, poorly understood or contains value that is outside of the scope of the LCA methodology as it is today. Several improvement areas were identified in regards to increasing our understanding of novel products and the methodological needs that are needed for a more complete assessment of these products. Most importantly, a framework was developed to include the impacts of plastic products in a more thorough way, which includes the contribution of microplastics to particulate matter formation. However, there is an urgent need for increasing our understanding of the microplastics cycle including, but not limited to: degradation rates of plastic in the natural environment, better understanding of degradation rates of conventional plastic in landfill and of littered plastic, increased understanding of the fate of macro and microplastic and finally, increased understanding of damage from this source of pollution to human health and ecosystem health. Additionally, the value of biodegradable materials should be carefully considered and might need to be redefined, as it is probable that the value of biodegradablematerials extends beyond the scope of the LCA methodology into ecological perspectives poorly covered by LCA e.g. biodiversity, ecosystems services.The three perspectives explored and findings produced during this project will facilitate the assessment of various biotechnologies in their regionally specific context. Depending on the goal and scope of future LCAs, the methodological elements identified here might be needed in their entirety or in a partial manner. Cross-disciplinary interactions will be key to ensure that the LCA methodology continues to develop and realizes its full potential, so that in the future when asked if bio is sustainable we can finally answer with a definitive statement. |