Popis: |
Denote by $k_t(G)$ the number of cliques of order $t$ in a graph $G$ having $n$ vertices. Let $k_t(n) = \min\{k_t(G)+k_t(\overline{G}) \}$ where $\overline{G}$ denotes the complement of $G$. Let $c_t(n) = {k_t(n)}/{\tbinom{n}{t}}$ and $c_t$ be the limit of $c_t(n)$ for $n$ going to infinity. A 1962 conjecture of Erd\H{o}s stating that $c_t = 2^{1-\tbinom{t}{2}}$ was disproved by Thomason in 1989 for all $t\geq 4$. Tighter counterexamples have been constructed by Jagger, {\v S}{\v t}ov{\' \i}{\v c}ek and Thomason in 1996, by Thomason for $t\leq 6$ in 1997, and by Franek for $t=6$ in 2002. Further tightenings $t=6,7$ and $8$ was recently obtained by Deza, Franek, and Liu. We investigate the computational framework used by Deza, Franek, and Liu. In particular, we present the benefits and limitations of different parallel computer memory architectures and parallel programming models. We propose a functional decomposition approach which is implemented in C++ with POSIX thread (Pthread) libraries for multi-threading. Computational benchmarking on the parallelized framework and a performance analysis including a comparison with the original computational framework are presented. Master of Science (MSc) |