Bounds on the unitarity triangle, $\sin$ 2 $\beta$ and $K \to$ $\pi \nu \overline \nu$ decays in models with minimal flavor violation

+psi%283685%29+K0%28L%29%22&type=SU">B --> psi(3685) K0(L), K0(L) --> pi0 neutrino antineutrino, branching ratio [K], CKM matrix matrix, lower limit, violation [flavor], bibliography, violation [CP], B --> strangeness neutrino antineutrino anything, semileptonic decay [K], interpretation of experiments [numerical calculations], K+ --> pi+ neutrino antineutrino, unitarity, ddc:530, width [B], semileptonic decay [B], upper limit -->
Popis: We present a general discussion of the unitarity triangle from $\epsilon_K$, $\Delta M_{d,s}$ and $K \to \pi\nu\overline{\nu}$ in models with minimal flavour violation (MFV), allowing for arbitrary signs of the generalized Inami--Lim functions $F_{tt}$ and $X$ relevant for $(\epsilon_K,\Delta M_{d,s})$ and $K \to \pi\nu\overline{\nu}$, respectively. In the models in which $F_{tt}$ has a sign opposite to the one in the Standard Model, i.e. $F_{tt}0$. An important finding of this paper is the observation that for given $Br(K^+\to\pi^+\nu\overline{\nu})$ and $a_{\psi K_S}$ only two values for $Br(K_{L}\to\pi^0\nu\overline{\nu})$, corresponding to the two signs of $X$, are possible in the full class of MFV models, independently of any new parameters arising in these models. This provides a powerful test for this class of models. Moreover, we derive absolute lower and upper bounds on $Br(K_{L}\to\pi^0\nu\overline{\nu})$ as functions of $Br(K^+\to\pi^+\nu\overline{\nu})$. Using the present experimental upper bounds on $Br(K^+\to\pi^+\nu\overline{\nu})$ and $|V_{ub}/V_{cb}|$, we obtain the absolute upper bound $Br(K_{L}\to\pi^0\nu\overline{\nu})< 7.1 \cdot 10^{-10}$ (90% C.L.).
Jazyk: English
DOI: 10.1103/PhysRevD.64.115010
Přístupová URL adresa: https://explore.openaire.eu/search/publication?articleId=od______1108::d2b936bf6369c3b2c018c21909ed4ab6
https://bib-pubdb1.desy.de/record/321010
Rights: OPEN
Přírůstkové číslo: edsair.od......1108..d2b936bf6369c3b2c018c21909ed4ab6
Autor: Buras, Andrzej J., Fleischer, Robert
Jazyk: angličtina
Rok vydání: 2001
Předmět:
Zdroj: Physical review / D 64(11), 115010 (2001). doi:10.1103/PhysRevD.64.115010
DOI: 10.1103/PhysRevD.64.115010
Popis: We present a general discussion of the unitarity triangle from $\epsilon_K$, $\Delta M_{d,s}$ and $K \to \pi\nu\overline{\nu}$ in models with minimal flavour violation (MFV), allowing for arbitrary signs of the generalized Inami--Lim functions $F_{tt}$ and $X$ relevant for $(\epsilon_K,\Delta M_{d,s})$ and $K \to \pi\nu\overline{\nu}$, respectively. In the models in which $F_{tt}$ has a sign opposite to the one in the Standard Model, i.e. $F_{tt}0$. An important finding of this paper is the observation that for given $Br(K^+\to\pi^+\nu\overline{\nu})$ and $a_{\psi K_S}$ only two values for $Br(K_{L}\to\pi^0\nu\overline{\nu})$, corresponding to the two signs of $X$, are possible in the full class of MFV models, independently of any new parameters arising in these models. This provides a powerful test for this class of models. Moreover, we derive absolute lower and upper bounds on $Br(K_{L}\to\pi^0\nu\overline{\nu})$ as functions of $Br(K^+\to\pi^+\nu\overline{\nu})$. Using the present experimental upper bounds on $Br(K^+\to\pi^+\nu\overline{\nu})$ and $|V_{ub}/V_{cb}|$, we obtain the absolute upper bound $Br(K_{L}\to\pi^0\nu\overline{\nu})< 7.1 \cdot 10^{-10}$ (90% C.L.).
Databáze: OpenAIRE