Coarse-graining Brownian motion : from particles to a discrete diffusion equation

Autor: Torre Rodríguez, Jaime Arturo de la
Přispěvatelé: Español Garrigós, Pep (Tutor)
Jazyk: angličtina
Rok vydání: 2010
Předmět:
Popis: Trabajo de Fin de Máster. Máster Universitario en Física de Sistemas ComplejosWe consider a recently obtained coarse-grained discrete equation for the diffusion of Brownian particles. The detailed level of description is governed by a Brownian dynamics of non-interacting particles. The coarse-level is described by discrete concentration variables defined in terms of the Delaunay cell. These coarse variables obey a stochastic differential equation that can be understood as a discrete version of a diffusion equation. The diffusion equation contains two basic building blocks which are the entropy function and the friction matrix. The entropy function is shown to be non-additive due to the overlapping of cells in the Delaunay construction. The friction matrix is state dependent in principle, but for near-equilibrium situations it is shown that it may safely evaluated at the equilibrium value of the density field.
Databáze: OpenAIRE