Autor: |
Torre Rodríguez, Jaime Arturo de la |
Přispěvatelé: |
Español Garrigós, Pep (Tutor) |
Jazyk: |
angličtina |
Rok vydání: |
2010 |
Předmět: |
|
Popis: |
Trabajo de Fin de Máster. Máster Universitario en Física de Sistemas ComplejosWe consider a recently obtained coarse-grained discrete equation for the diffusion of Brownian particles. The detailed level of description is governed by a Brownian dynamics of non-interacting particles. The coarse-level is described by discrete concentration variables defined in terms of the Delaunay cell. These coarse variables obey a stochastic differential equation that can be understood as a discrete version of a diffusion equation. The diffusion equation contains two basic building blocks which are the entropy function and the friction matrix. The entropy function is shown to be non-additive due to the overlapping of cells in the Delaunay construction. The friction matrix is state dependent in principle, but for near-equilibrium situations it is shown that it may safely evaluated at the equilibrium value of the density field. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|