Étale homotopy sections of algebraic varieties

Autor: Haydon, J
Přispěvatelé: Kim, M
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Popis: We define and study the fundamental pro-finite 2-groupoid of varieties X defined over a field k. This is a higher algebraic invariant of a scheme X, analogous to the higher fundamental path 2-groupoids as defined for topological spaces. This invariant is related to previously defined invariants, for example the absolute Galois group of a field, and Grothendieck’s étale fundamental group. The special case of Brauer-Severi varieties is considered, in which case a “sections conjecture” type theorem is proved. It is shown that a Brauer-Severi variety X has a rational point if and only if its étale fundamental 2-groupoid has a special sort of section.
Databáze: OpenAIRE