Autor: |
Kranz, M, Sattler, B, Wüst, N, Deuther-Conrad, W, Patt, M, Meyer, PM, Fischer, S, Donat, CK, Wünsch, B, Hesse, S, Steinbach, J, Brust, P, Sabri, O |
Jazyk: |
angličtina |
Rok vydání: |
2016 |
Předmět: |
|
Popis: |
The enantiomers of [(18)F]fluspidine, recently developed for imaging of σ₁ receptors, possess distinct pharmacokinetics facilitating their use in different clinical settings. To support their translational potential, we estimated the human radiation dose of (S)-(-)-[(18)F]fluspidine and (R)-(+)-[(18)F]fluspidine from ex vivo biodistribution and PET/MRI data in mice after extrapolation to the human scale. In addition, we validated the preclinical results by performing a first-in-human PET/CT study using (S)-(-)-[(18)F]fluspidine. Based on the respective time-activity curves, we calculated using OLINDA the particular organ doses (ODs) and effective doses (EDs). The ED values of (S)-(-)-[(18)F]fluspidine and (R)-(+)-[(18)F]fluspidine differed significantly with image-derived values obtained in mice with 12.9 μSv/MBq and 14.0 μSv/MBq (p < 0.025), respectively. A comparable ratio was estimated from the biodistribution data. In the human study, the ED of (S)-(-)-[(18)F]fluspidine was calculated as 21.0 μSv/MBq. Altogether, the ED values for both [(18)F]fluspidine enantiomers determined from the preclinical studies are comparable with other (18)F-labeled PET imaging agents. In addition, the first-in-human study confirmed that the radiation risk of (S)-(-)-[(18)F]fluspidine imaging is within acceptable limits. However, as already shown for other PET tracers, the actual ED of (S)-(-)-[(18)F]fluspidine in humans was underestimated by preclinical imaging which needs to be considered in other first-in-human studies. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|