Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac cine MRI
Autor: | Zhang, N, Yang, G, Gao, Z, Xu, C, Zhang, Y, Shi, R, Keegan, J, Xu, L, Zhang, H, Fan, Z, Firmin, D |
---|---|
Přispěvatelé: | British Heart Foundation |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Adult
Male Databases Factual Myocardial Infarction Magnetic Resonance Imaging Cine Sensitivity and Specificity CONTRAST-MEDIA Deep Learning TEXTURE ANALYSIS Image Interpretation Computer-Assisted Humans cardiovascular diseases 11 Medical and Health Sciences Aged Retrospective Studies Science & Technology DELAYED-ENHANCEMENT Radiology Nuclear Medicine & Medical Imaging PERFORMANCE Middle Aged SEGMENTS Nuclear Medicine & Medical Imaging CARDIOVASCULAR MAGNETIC-RESONANCE Chronic Disease cardiovascular system Female Life Sciences & Biomedicine |
Popis: | Background Renal impairment is common in patients with coronary artery disease and, if severe, late gadolinium enhancement (LGE) imaging for myocardial infarction (MI) evaluation cannot be performed. Purpose To develop a fully automatic framework for chronic MI delineation via deep learning on non–contrast material–enhanced cardiac cine MRI. Materials and Methods In this retrospective single-center study, a deep learning model was developed to extract motion features from the left ventricle and delineate MI regions on nonenhanced cardiac cine MRI collected between October 2015 and March 2017. Patients with chronic MI, as well as healthy control patients, had both nonenhanced cardiac cine (25 phases per cardiac cycle) and LGE MRI examinations. Eighty percent of MRI examinations were used for the training data set and 20% for the independent testing data set. Chronic MI regions on LGE MRI were defined as ground truth. Diagnostic performance was assessed by analysis of the area under the receiver operating characteristic curve (AUC). MI area and MI area percentage from nonenhanced cardiac cine and LGE MRI were compared by using the Pearson correlation, paired t test, and Bland-Altman analysis. Results Study participants included 212 patients with chronic MI (men, 171; age, 57.2 years ± 12.5) and 87 healthy control patients (men, 42; age, 43.3 years ± 15.5). Using the full cardiac cine MRI, the per-segment sensitivity and specificity for detecting chronic MI in the independent test set was 89.8% and 99.1%, respectively, with an AUC of 0.94. There were no differences between nonenhanced cardiac cine and LGE MRI analyses in number of MI segments (114 vs 127, respectively; P = .38), per-patient MI area (6.2 cm2 ± 2.8 vs 5.5 cm2 ± 2.3, respectively; P = .27; correlation coefficient, r = 0.88), and MI area percentage (21.5% ± 17.3 vs 18.5% ± 15.4; P = .17; correlation coefficient, r = 0.89). Conclusion The proposed deep learning framework on nonenhanced cardiac cine MRI enables the confirmation (presence), detection (position), and delineation (transmurality and size) of chronic myocardial infarction. However, future larger-scale multicenter studies are required for a full validation. |
Databáze: | OpenAIRE |
Externí odkaz: |