Sobiva omaduste profiiliga ühendite tuvastamine keemiliste struktuuride andmekogudest
Autor: | Takkis, Kalev |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: | |
Popis: | Keemiliste ühendite digitaalsete andmebaaside kasutuselevõtuga kaasneb vajadus leida neist arvutuslikke vahendeid kasutades sobivate omadustega molekule. Probleem on eriti huvipakkuv ravimitööstuses, kus aja- ja ressursimahukate katsete asendamine arvutustega, võimaldab märkimisväärset säästu. Kuigi tänapäevaste arvutusmeetodite piiratud võimsuse tõttu ei ole lähemas tulevikus võimalik kogu ravimidisaini protsessi algusest lõpuni arvutitesse ümber kolida, on lugu teine, kui vaadelda suuri andmekogusid. Arvutusmeetod, mis töötab teadaoleva statistilise vea piires, visates välja mõne sobiva ühendi ja lugedes mõni ekslikult aktiivseks, tihendab lõppkokkuvõttes andmekomplekti tuntaval määral huvitavate ühendite suhtes. Seetõttu on ravimiarenduse lihtsamate ja vähenõudlikkumade etappide puhul, nagu juhtühendite või ravimikandidaatide leidmine, edukalt võimalik rakendada arvutuslikke vahendeid. Selline tegevus on tuntud virtuaalsõelumisena ning käesolevasse töösse on sellest avarast ja kiiresti arenevast valdkonnast valitud mõningad suunad, ning uuritud nende võimekust ja tulemuslikkust erinevate projektide raames. Töö tulemusena on valminud arvutusmudelid teatud tüüpi ühendite HIV proteaasi vastase aktiivsuse ja tsütotoksilisuse hindamiseks; koostatud uus sõelumismeetod; leitud potentsiaalsed ligandid HIV proteaasile ja pöördtranskriptaasile; ning kokku pandud farmakokineetiliste filtritega eeltöödeldud andmekomplekt – mugav lähtepositsioon edasisteks töödeks. With the implementation of digital chemical compound libraries, creates the need for finding compounds from them that fit the desired profile. The problem is of particular interest in drug design, where replacing the resource-intensive experiments with computational methods, would result in significant savings in time and cost. Although due to the limitations of current computational methods, it is not possible in foreseeable future to transfer all of the drug development process into computers, it is a different story with large molecular databases. An in silico method, working within a known error margin, is still capable of significantly concentrating the data set in terms of attractive compounds. That allows the use of computational methods in less stringent steps of drug development, such as finding lead compounds or drug candidates. This approach is known as virtual screening, and today it is a vast and prospective research area comprising of several paradigms and numerous individual methods. The present thesis takes a closer look on some of them, and evaluates their performance in the course of several projects. The results of the thesis include computational models to estimate the HIV protease inhibition activity and cytotoxicity of certain type of compounds; a few prospective ligands for HIV protease and reverse transcriptase; pre-filtered dataset of compounds – convenient starting point for subsequent projects; and finally a new virtual screening method was developed. |
Databáze: | OpenAIRE |
Externí odkaz: |