Convergence of delay equations driven by a Hölder continuous function of order 1/3<β<1/2
Autor: | Besalú, Mireia, Binotto, Giulia, Rovira Escofet, Carles |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Popis: | In this article we show that, when the delay approaches zero, the solution of multidimensional delay differential equations driven by a Hölder continuous function of order 1/3 < \beta < 1/2 converges with the supremum norm to the solution for the equation without delay. Finally we discuss the applications to stochastic differential equations. |
Databáze: | OpenAIRE |
Externí odkaz: |