A HYBRID INTELLIGENT MODEL FOR TOURISM DEMAND FORECASTING
Autor: | Anurag Kulshrestha, Abhishek Kulshrestha, Shikha Suman |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Acta turistica Volume 29 Issue 2 |
ISSN: | 1848-6061 0353-4316 |
Popis: | Rast turističke potražnje diljem svijeta dovela je do porasta broja metoda za prognoziranje turističke potražnje. Nove su tehnike polučile pouzdane prognoze turističkih dolazaka s ciljem boljeg ekonomskog planiranja. Ovo istraživanje ima za cilj prognozirati i usporediti djelotvornost dvaju nelinearnih pristupa umjetne inteligencije u predviđanju broja turističkih dolazaka u Singapur. Mjesečni podaci o dolasku turista u Singapur korišteni su za prognoziranje mjesec, dva, četiri i šest mjeseci unaprijed pomoću nelinearnih autoregresivnih (NAR) neuronskih mreža i neuro-fuzzy (neizrazitih) sustava. Točnost predviđanja neuronskih mreža NAR uspoređivala se s onom neuro-fuzzy sustava pomoću različitih mjerenja učinkovitosti. Studija je pokazala da su neuro-fuzzy sustavi učinkovitiji od mreže NAR u svim razdobljima prognoze i kod svih zemalja. Predložena neuro-fuzzy metoda poboljšava učinkovitost prognoziranja tehnika temeljenih na umjetnoj inteligenciji. Ova studija predstavlja doprinos literaturi u području turizma i mogu je koristiti menadžeri za učinkovito planiranje i provođenje mjera u okviru turističke politike. The ever increasing demand of the tourism sector worldwide has led to an increase in tourism demand forecasting methodologies. New techniques yield much reliable predictions of tourist arrivals for better economic planning. The study aims to forecast and compare the performance of two non-linear artificial intelligence approaches in predicting the number of tourist arrivals to Singapore. The Singapore inbound monthly tourism data were utilized to generate one, two, four and six month ahead forecasts with non-linear autoregressive (NAR) neural networks and neuro-fuzzy systems. The predictive accuracy of NAR neural networks and neuro-fuzzy systems were compared with various performance metrics. The study revealed that neuro-fuzzy systems outperformed NAR networks in all forecasting horizons and for all countries. The proposed neuro-fuzzy methodology helps in improving the forecasting performance of artificial intelligence based techniques. The study contributes to hospitality literature and could be utilized by managers to effectively plan and implement tourism related policy measures. |
Databáze: | OpenAIRE |
Externí odkaz: |