Genetička diferenciranost subpopulacija obične smreke (Picea abies (L.) Karst.) na planini Igman

Autor: Dalibor Ballian, F. Bogunić, M. Konnert, H. Kraigher, M. Pučko, G. Božič
Jazyk: chorvatština
Rok vydání: 2007
Předmět:
Zdroj: Šumarski list
Volume 131
Issue 1-2
ISSN: 1846-9140
0373-1332
Popis: Uporabom 12 izoenzimskih sustava, te analizom 20 gen lokusa, uspoređivana je genetička struktura dviju subpopulacija s planine Igman. Prema ekološkim pokazateljima, a misli se na klimu i njeno djelovanje, postoje razlike između subpopulacija, jer jedna pripada mrazištu a druga tipičnoj planinskoj klimi. Rezultati analize izoenzimskih biljega upućuju na postojanje razlika između analiziranih subpopulacija.
In this study we analyzed the genetic structure of two autochthonous subpopulations of Norway spruce in the Mountain of Igman by usage of isoenzyme markers. We collected the material for the analysis in two separate plant communities. The subpopulation Igman – A is represented by fir-tree and spruce forest with randomly distributed white pine trees (Abieti-Piceetum illyricum Stef. 1960) while the Igman – B subpopulation is represented through the spruce tree of frosty type in the mountain area (Piceetum montanum s.lat. (Fuk. et Stef., 1958, emend. Horv. et al., 1974)). Between the subpopulations there is a 150 m difference in altitude. We analyzed the following systems of Acotinase (Aco-A), Glutamate dehydrogenase (Gdh-A), Glutamate oxaloacetate transaminase (Got-A, Got-B, Got-C), Izocitrate dehidrogenase (Idh-A, Idh-B), Leucine aminopeptidase (Lap-B), Malate dehydrogenase (Mdh-A, Mdh-B, Mdh-C), Menadione reductase (Mnr-A, Mnr-C), Phosphoglucose isomerase (Pgi-B), Phosphoglucomutase (Pgm-A), Shikimate dehydrogenase (Skdh-A), 6-Phosphogluconate dehydrogenase (6-Pgdh-A, 6-Pgdh-B, 6-Pgdh-C) and Fluorescentesterase (Fest-B). The frequency of the allele and the frequency of genotypes show diversity between subpopulations. The Allele differentiation was most evident at loci Got-C, 6-Pgdh-A. In the sample of the Igman – A subpopulation the frequency of the allele Aco-A2 was 7 % lower, and the frequency of 6-Pgdh-A2 7 % higher than in the sample from Igman – B subpopulation. The genotype subpopulations are most explicitly differentiated at loci Fest-B, Got-C, Lap-B, Mdh-C, Mnr-A, Mnr-C, Pgi-B, 6-Pgdh-A, 6-Pgdh-B, 6-Pgdh-C. If the Igman – A subpopulation is compared with Igman – B subpopulation, we have 8–14% higher frequency of homozygote: Got-C44 (52 % vs. 44 %), Fest22 (90 % vs. 80 %), Mnr-A22 (12 % vs. 4 %), Mnr-C22 (94 % vs. 82 %), 6-Pgdh-A22 (94 % vs. 80 %), 6-Pgdh-C22 (42 % vs. 30 %) and from 10–14 % higher heterozygote frequency for gene loci: Lap-B46 (12 % vs. 0 %), Pgi-B23 (52 % vs. 42 %), 6-Pgdh-B25 (54 % vs. 40 %). In Igman – B subpopulation versus Igman – A subpopulation has 10 % higher homozygote frequency, as follows: Pgi-B33 (46 % vs. 36 %), 6-Pgdh-B22 (50 % vs. 40 %) and between 8–14 % heterozygote frequency Fest-B12 (14 % vs. 2 %), Mnr-A24 (70 % vs. 56 %), Mnr-C23 (16 % vs. 4 %), 6-Pgdh-A23 (12 % vs. 4 %), 6-Pgdh-C25 (60 % vs. 46 %). By statistical calculation we obtained an average number of allele per locus, thus in the subpopulation A the number of allele per locus was 2,71, and the effective was 1,307, and in the subpopulation B it was 2,59, while the effective number was 1,332. The actual heterozygosis in subpopulation A was 24,4 %, and expected was 84,1 %, and in the subpopulation B the actual was 26,2 %, and expected 81,9 %. The number of polymorphous loci in both populations was 17, and the percentage of polymorphous loci was 85,00%. Through the analysis of the allele genetic closeness and genetic distance (d0), we can conclude that the closeness is very high, and differences are relatively small. Thus we determined that the allele closeness has the value of 0,959, and the distance is 0,041 according to Gregorius (1974), which in our case is an extremely high value taking into account the distance between subpopulations of approximately 2 km. Applied statistical parameters for comparison of populations did not show major differences, but the analysis of the direct comparison of the allele presence and their frequency points at the existence of differences, that is, the influence of diverse selection pressures at populations.
Databáze: OpenAIRE