Molecular dynamics simulation of plane poiseuille flow in nanochannels

Autor: Rudyak, VY, Belkin, AA, Egorov, VV, Ivanov, DA, 2nd Micro and Nano Flows Conference (MNF2009)
Jazyk: angličtina
Rok vydání: 2009
Předmět:
Popis: This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications. This paper presents new techniques and results of simulating microflows in plane channels by the molecular dynamics (MD) method. Mass forces and thermostat are not used in these techniques. The flows are simulated by both hard-sphere molecules and molecules with the Lennard-Jones intermolecular potential. Flow at a given fluid flow rate is implemented. In this case, the initial shock profile is transformed to a parabolic type profile. However, unlike in ordinary Poiseuille flows, a slip effect is recorded on the channel walls. It is shown that, in a nanochannel, a linear pressure gradient occurs. Fluid structuring is studied. The effects of fluid density, accommodation coefficients, and channel dimensions on flow properties are investigated. This work was supported in part by the Russian Foundation for Basic Researches (grant No. 07-08-00164) and by the grant of the President of the Russian Federation for Support of Leading Scientific Schools (project no. NSh-454.2008.1).
Databáze: OpenAIRE