Entwicklung chimärer Antigenrezeptor T-Zellen mit verbessertem Therapeutischen Index in der Krebsimmuntherapie durch die Verwendung von nicht-viralen Gentransfer und Genomeditierung
Autor: | Monjezi, Razieh |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: | |
Popis: | The advances in genetic engineering have enabled us to confer T cells new desired functions or delete their specific undesired endogenous properties for improving their antitumor function. Due to their efficient gene delivery, viral vectors have been successfully used in T-cell engineering to provide gene transfer medicinal products for the treatment of human disease. One example is adoptive cell therapy with T cells that were genetically modified with gamma-retroviral and lentiviral (LV) delivery vectors to express a CD19-specific chimeric antigen receptor (CAR) for cancer treatment. This therapeutic approach has shown remarkable results against B-cell malignancies in pilot clinical trials. Consequently, there is a strong desire to make CAR T cell therapy scalable and globally available to patients. However, there are persistent concerns and limitations with the use of viral vectors for CAR T cell generation with regard to safety, cost and scale of vector production. In order to address these concerns, we aimed to improve non-viral gene transfer and genome editing tools as an effective, safe and broadly applicable alternative to viral delivery methods for T-cell engineering. In the first part of the study, we engineered CAR T cells through non-viral Sleeping Beauty (SB) transposition of CAR genes from minimalistic DNA vectors called minicircles rather than conventional SB plasmids. This novel approach dramatically increased stable gene transfer rate and cell viability and resulted in higher yield of CAR+ T cells without the need of long ex vivo expansion to generate therapeutic doses of CAR+ T cells. Importantly, CD19-CAR T cells modified by MC-based SB transposition were equally effective as LV transduced CD19-CAR T cells in vitro and in a murine xenograft model (NSG/Raji-ffLuc), where a single administration of CD8+ and CD4+ CAR T cells led to complete eradication of lymphoma and memory formation of CAR T cells after lymphoma clearance. To characterize the biosafety profile of the CAR T cell products, we did the most comprehensive genomic insertion site analysis performed so far in T cells modified with SB. The data showed a close-to-random integration profile of the SB transposon with a higher number of insertions in genomic safe harbors compared to LV integrants. We developed a droplet digital PCR assay that enables rapid determination of CAR copy numbers for clinical applications. In the second part of the study, we ablated expression of PD-1, a checkpoint and negative regulator of T cell function to improve the therapeutic index of CAR T cells. This was accomplished using non-viral CRISPR/Cas9 via pre-assemble Cas9 protein and in vitro-transcribed sgRNA (Cas9 RNP). Finally, we combined our developed Cas9 RNP tool with CAR transposition from MC vectors into a single-step protocol and successfully generated PD-1 knockout CAR+ T cells. Based on the promising results achieved from antibody-mediated PD-1 blockade in the treatment of hematological and solid tumors, we are confident that PD-1 knockout CAR T cells enhance the potency of CAR T cell therapies for treatment of cancers without the side effects of antibody-based therapies. In conclusion, we provide a novel platform for virus-free genetic engineering of CAR T cells that can be broadly applied in T-cell cancer therapy. The high level of gene transfer rate and efficient genome editing, superior safety profile as well as ease-of-handling and production of non-viral MC vectors and Cas9 RNP position our developed non-viral strategies to become preferred approaches in advanced cellular and gene-therapy. Die Fortschritte des genetischen Engineerings erlauben uns, T-Zellen neue, erwünschte Funktionen zu verleihen oder ihnen bestimmte, unerwünschte endogenen Eigenschaften zu nehmen, um ihre Antitumorfunktion zu verbessern. Aufgrund ihrer Effizienz im Gentransport, werden virale Vektoren für das TZellengineering verwendet, um gentransferierte, medizinische Produkte zur Behandlung humaner Krankheiten herzustellen. Ein Beispiel hierfür ist die adoptive Zelltherapie mit T-Zellen, die mit gamma-retroviralen und lentiviralen (LV) Vektoren genetisch modifiziert wurden, so dass sie einen CD19-spezifischen chimären Antigenrezeptor (CAR) exprimieren. In klinischen Pilotstudien zu B-Zellerkrankungen zeigte dieser therapeutische Ansatz bereits beachtliche Erfolge. Hieraus resultiert das Bestreben, die CAR-T-Zelltherapie für Patienten skalierbar und weltweit zugänglich zu machen. Aufgrund gesundheitlicher Risiken, finanzieller Kosten und dem Umfang der Vektorenproduktion bestehen jedoch anhaltende Bedenken und Grenzen bezüglich der Verwendung viraler Vektoren für die Herstellung von CAR-T-Zellen. Um diese Problematiken zu umgehen, beabsichtigten wir, den nicht-viralen Gentransfer sowie genomverändernde Techniken soweit zu verbessern, dass sie als eine effiziente, sichere und umfassend einsetzbare Alternative zum virusbasierten T-Zellengineering verwendet werden können. Im ersten Teil dieser Arbeit stellten wir durch die Sleeping Beauty (SB) Transposition von CAR-Genen auf minimalistischen DNA Vektoren (sogenannten Minicircles) CART-Zellen her. Die Minicircles wurden anstelle von konventionellen SB Plasmiden verwendet. Mithilfe dieser neuen Vorgehensweise wurden die Rate des stabilen Gentransfers sowie das Überleben der Zellen drastisch erhöht und führte zu einer gesteigerten Rate an CAR+ T-Zellen, ohne dass eine langwierige ex vivo Expansion zur Herstellung therapeutisch relevanter CAR-T-Zelldosen nötig wurde. CD19-CART-Zellen, die mit MC-basierter SB-Transposition modifiziert wurden, zeigten in vitro und in einem murinen Xenograftmodell (NSG/Raji-ffLuc) eine vergleichbar hohe Effizienz, wie LV-transduzierte CD19-CAR-T-Zellen. Hierbei genügte eine einzige Verabreichung von CD4+ und CD8+ CAR-T-Zellen für eine komplette Eliminierung des Lymphoms und der anschließenden Gedächtnisbildung von CAR-T-Zellen. Um die Biosicherheit der CAR-T-Zellprodukte zu charakterisieren, führten wir die bislang umfassendste vergleichende Analyse von Genominsertionsstellen nach SB-basierter Modifikation von T-Zellen durch. Im Vergleich zur LV Integration zeigten diese Daten ein beinahe zufälliges Integrationsmuster des SB Transposons mit höheren Integrationsraten in genomisch „sicheren Häfen“. Wir entwickelten eine Analyse basierend auf digitaler Tröpfchen-PCR, um eine rasche Ermittlung der Anzahl an CAR-Genkopien in klinischen Anwendungen zu ermöglichen. Im zweiten Teil der Arbeit verminderten wir die Expression von PD-1, einer Prüfstelle und negativen Regulator der T-Zellfunktion, um den therapeutischen Index der CART- Zellen zu verbessern. Dies wurde durch die Verwendung eines nicht-viralen CRISPR/Cas9, durch das Zusammensetzen von Cas9 Protein und in vitrotranskribierter sgRNA (Cas9 RNP), erzielt. Schließlich verwendeten wir unsere entwickelte Cas9 RNP-Technik in Kombination mit CAR-Transposition von MCVektoren, um PD-1-knock out, CAR-positive T-Zellen herzustellen. Da die antikörperbasierte PD-1-Blockade in der Behandlung hämatologischer und solider Tumore vielversprechende Ergebnisse zeigt, sind wir zuversichtlich, dass PD-1-knock out CAR-T-Zellen die Effizienz von CAR-T-Zelltherapien verschiedener Krebsarten verbessern können und dabei die Nebenwirkungen der antikörperbasierten Therapien umgehen. Wir zeigen in der vorliegenden Arbeit Möglichkeiten mit virusfreien, gentechnischen Methoden CAR-T-Zellen herzustellen, die in der T-Zellkrebstherapie umfassend Anwendung finden können. Das hohe Level der Gentransferraten und der effizienten Genomeditierung, ein zu bevorzugendes Sicherheitsprofil sowie die einfache Handhabung und Produktion nichtviraler MC-Vektoren und Cas9 RNP machen es möglich, dass unser neuentwickelter, nichtviraler Ansatz zu einer bevorzugten Herangehensweise in der künftigen Zell- und Gentherapie werden kann. |
Databáze: | OpenAIRE |
Externí odkaz: |