Untersuchungen zum Kontakt-Kinin-System und zur Makrophagen-Aktivierung beim Experimentellen Schlaganfall

Autor: Heydenreich, Nadine
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Popis: Traditionally, ischemic stroke has been regarded as the mere consequence of cessation of cerebral blood flow, e.g. due to the thromboembolic occlusion of a major brain supplying vessel. However, the simple restoration of blood flow via thrombolysis and/or mechanical recanalization alone often does not guarantee a good functional outcome. It appears that secondary detrimental processes are triggered by hypoxia and reoxygenation, which are referred to as ischemia/reperfusion (I/R) injury. During recent years it became evident that, beside thrombosis inflammation and edema formation are key players in the pathophysiology of cerebral ischemia. The contact-kinin system represents an interface between thrombotic, inflammatory and edematous circuits. It connects the intrinsic coagulation pathway with the plasma kallikrein-kinin system (KKS) via coagulation factor FXII. The serine protease inhibitor C1-inhibitor (C1-INH) has a wide spectrum of inhibitory activities and counteracts activation of the contact-kinin system at multiple levels. The first part of the thesis aimed to multimodally interfere with infarct development by C1-INH and to analyze modes of actions of human plasma derived C1-INH Berinert® P in a murine model of focal cerebral ischemia. It was shown that C57BL/6 mice following early application of 15.0 units (U) C1-INH, but not 7.5 U developed reduced brain infarctions by ~60% and less neurological deficits in the model of transient occlusion of the middle cerebral artery (tMCAO). This protective effect was preserved at more advanced stages of infarction (day 7), without increasing the risk of intracerebral bleeding or affecting normal hemostasis. Less neurological deficits could also be observed with delayed C1-INH treatment, whereas no improvement was achieved in the model of permanent MCAO (pMCAO). Blood-brain-barrier (BBB) damage, inflammation and thrombosis were significantly improved following 15.0 U C1-INH application early after onset of ischemia. Based on its strong antiedematous, antiinflammatory and antithrombotic properties C1-INH constitutes a multifaceted therapeutic compound that protects from ischemic neurodegeneration in ‘clinically meaningful’ settings. The second part of the thesis addresses the still elusive functional role of macrophages in the early phase of stroke, especially the role of the macrophage-specific adhesion molecule sialoadhesin (Sn). For the first time, sialoadhesin null (Sn-/-) mice, homozygous deficient for Sn on macrophages were subjected to tMCAO to assess the clinical outcome. Neurological and motor function was significantly improved in Sn-/- mice on day 1 after ischemic stroke compared with wildtype (Sn+/+) animals. These clinical improvements were clearly detectable even on day 3 following tMCAO. Infarctions on day 1 were roughly the same size as in Sn+/+ mice and did not grow until day 3. No intracerebral bleeding could be detected at any time point of data acquisition. Twenty four hours after ischemia a strong induction of Sn was detectable in Sn+/+ mice, which was previously observed only on perivascular macrophages in the normal brain. Deletion of Sn on macrophages resulted in less disturbance of the BBB and a reduced number of CD11b+ (specific marker for macrophages/microglia) cells, which, however, was not associated with altered expression levels of inflammatory cytokines. To further analyze the function of macrophages following stroke this thesis took advantage of LysM-Cre+/-/IKK2-/- mice bearing a nuclear factor (NF)-ϰB activation defect in the myeloid lineage, including macrophages. Consequently, macrophages were not able to synthesize inflammatory cytokines under the control of NF-ϰB. Surprisingly, infarct sizes and neurological deficits upon tMCAO were roughly the same in conditional knockout mice and respective wildtype littermates. These findings provide evidence that macrophages do not contribute to tissue damage and neurological deficits, at least, not by release of inflammatory cytokines in the early phase of cerebral ischemia. In contrast, Sn which is initially expressed on perivascular macrophages and upregulated on macrophages/microglia within the parenchyma following stroke, influenced functional outcome.
Der ischämische Schlaganfall wird traditionell als unmittelbare und „einfache“ Folge der Unterbrechung des Blutflusses zum Gehirn z.B. durch thromboembolische Gefäßverschlüsse gesehen. Häufig führt die alleinige Wiederherstellung des Blutflusses durch Lysetherapie bzw. mechanische Rekanalisation jedoch nicht zu einer Funktionserholung. Dies rückt sekundäre pathophysiologische Prozesse in den Fokus, die durch die Hypoxie und anschließende Wiederversorgung mit Sauerstoff angestoßen werden und zu einem sogenannten Reperfusionsschaden führen. In den letzten Jahren wurde klar, dass neben der Thrombenbildung Entzündungsprozesse und Hirnschwellung zentrale Bestandteile der Pathophysiologie von ischämischen Schlaganfällen sind, die über ein komplexes Netzwerk von Signalwegen eng miteinander verknüpft sind. An dieser Schnittstelle setzt die vorliegende Dissertation an. Das Kontakt-Kinin-System verbindet das plasmatische Kallikrein-Kinin-System (KKS), welches entzündliche und ödematöse Prozesse anstößt, über den Blutgerinnungsfaktor FXII mit dem intrinsischen Blutgerinnungsweg, der letztlich für die Thrombenbildung verantwortlich ist. Der endogene Serinprotease-Inhibitor C1-Inhibitor (C1-INH) besitzt ein breites Wirkungsspektrum und wirkt der Aktivierung des Kontakt-Kinin-Systems auf verschiedenen Ebenen entgegen. Ziel des ersten Teils der vorliegenden Dissertation war es, mittels C1-INH auf multimodale Weise ins Infarktgeschehen einzugreifen und die Wirkmechanismen des humanen C1-INH Berinert® P im Mausmodell nach fokaler zerebraler Ischämie zu untersuchen. Es konnte gezeigt werden, dass die frühe Behandlung von C57BL/6 Mäusen mit 15.0 Units (U) C1-INH im Modell der transienten Okklusion der Arteria cerebri media (tMCAO) eine drastische Reduzierung der Infarktvolumina um annähernd 60%, sowie deutlich weniger neurologische und funktionelle Defizite zur Folge hatte. Diese Schutzwirkung war auch im fortgeschrittenen Stadium (Tag 7) der Schlaganfallentwicklung zu beobachten, ohne das Risiko einer intrazerebralen Blutung zu erhöhen oder die normale Hämostase zu beeinflussen. Die Applikation von 7.5 U C1-INH hatte dagegen keinen Effekt. Ein wesentlich verbessertes neurologisches Verhalten konnte auch nach verzögerter Injektion von 15.0 U C1-INH erzielt werden. Im Gegensatz dazu bewirkte die Behandlung im Modell der permanenten MCAO (pMCAO) keine Verbesserung. Mechanistisch führte die Gabe von 15.0 U C1-INH zu einer deutlichen Stabilisierung der Bluthirnschranke und weniger Ödembildung. Darüber hinaus war die lokale Entzündungsreaktion nach C1-INH-Applikation abgeschwächt und es bildeten sich weniger Thromben in der zerebralen Mikrozirkulation. Basierend auf seiner vielfältigen antithrombotischen, antientzündlichen und antiödematösen Potenz stellt C1-INH einen vielversprechenden Ansatz zum Schutz vor ischämischer Neurodegeneration nach Schlaganfall unter ‚klinisch relevanten‘ Bedingungen dar. Der zweite Teil der Dissertation beschäftigt sich mit der bislang ungeklärten funktionellen Rolle von Makrophagen in der Frühphase nach Schlaganfall, speziell der Rolle des Makrophagen-spezifischen Signalmoleküls Sialoadhesin (Sn). Hierzu wurden erstmals Sialoadhesin-defiziente (Sn-/-) Mäuse, deren Makrophagen kein Sn exprimieren, der tMCAO unterzogen und die klinischen Folgen bewertet. Sn-/- Tiere zeigten verglichen mit Wildtypen (Sn+/+) verbesserte neurologische und motorische Funktionen an Tag 1 nach Schlaganfall. Diese Verbesserung war auch an Tag 3 nach Schlaganfall eindeutig nachweisbar. Die Infarkte an Tag 1 waren größenmäßig vergleichbar mit Sn+/+ Mäusen und nahmen bis Tag 3 nicht an Größe zu. Zu keinem Zeitpunkt wurde eine intrazerebrale Blutung beobachtet. 24 Stunden nach Schlaganfall kam es bei Sn+/+ Mäusen zu einer starken Induktion von Sn, welches im normalen Gehirn nur auf perivaskulären Makrophagen exprimiert wurde. Die Deletion von Sn auf Makrophagen wirkte einer Bluthirnschrankenstörung entgegen und hatte eine deutlich geringere Infiltration von CD11b+ (spezifischer Marker für Makrophagen/Mikroglia) Zellen ins ischämische Gewebe zur Folge. Dies war interessanterweise nicht mit einer Veränderung der Zytokinexpression verknüpft. Zur weiteren Untersuchung der Makrophagenrolle nach Schlaganfall wurde die Dissertation auf LysM-Cre+/-/IKK2-/- Mäuse ausgedehnt. Diese wiesen einen Makrophagen-spezifischen Defekt in der Aktivierung des Transkriptionsfaktors Nuklearfaktor (NF)-ϰB auf, und konnten folglich inflammatorische Zytokine unter der Transkriptionskontrolle von NF-ϰB nicht synthetisieren. Die Infarktgrößen und neurologischen Defizite der transgenen Tiere waren überraschenderweise vergleichbar mit wildtypischen Wurfgeschwistern. Diese Ergebnisse deuten darauf hin, dass Makrophagen zumindest nicht durch die Synthese von inflammatorischen Zytokinen zum Gewebeschaden und zu neurologischen Defiziten in der Frühphase nach Schlaganfall beitragen, während Sn, das initial nur auf perivaskulären Makrophagen exprimiert und später im ischämischen Parenchym auf Makrophagen/Mikroglia hochreguliert wird, Einfluss auf das funktionelle Outcome hatte.
Databáze: OpenAIRE