Popis: |
Havs- och vattenmyndigheten har gett SMED i uppdrag att genomföra beräkningar av kväve- och fosforbelastning från olika källor för år 2017 till sjöar, vattendrag och havet för hela Sverige. Syftet är att ge underlag till Sveriges rapportering till HELCOM PLC7 samt till vattenförvaltningens arbete i Sverige. Denna rapport, tillsammans med underlagsrapporter, redovisar resultat, underlagsdata, och beräkningsmetoder på detaljnivå för att uppnå transparens och spårbarhet samt för att möjliggöra vidareanvändning i arbetet inom svensk vattenförvaltning. Beräkningarna genomfördes i så stor utsträckning som möjligt med den metodiken som togs fram inom föregående projekt (PLC6). Arbetet innebär att stora mängder data har bearbetats och beräknats för att ge heltäckande information för hela Sverige fördelat på cirka 24 500 vattenförekomstområden. Resultaten är tillgängliga för alla via webbverktyget Tekniskt Beräkningssystem Vatten (TBV, tbv.smhi.se). Resultaten presenteras som brutto- samt nettobelastning för varje näringskälla, fördelat på total, antropogen och bakgrundsbelastning. Bruttobelastning är den mängd näringsämnen som släpps ut vid källan till ett vattendrag eller sjö. Nettobelastning är den del av bruttobelastningen som når havet. Skillnaden mellan brutto- och nettobelastningen benämns retention. Jordbruks- och skogsmark är de två största källorna till den totala belastningen på havet (nettobelastning) för både kväve och fosfor, med 33 400 respektive 31 670 ton/år kväve, samt 1 010 respektive 870 ton/år fosfor år 2017. Tillsammans står dessa källor för cirka 60 % av den totala belastningen. Av den antropogena belastningen står jordbruket för den största andelen (19 470 ton/år kväve samt 710 ton/år fosfor), följt av utsläpp från avloppsreningsverk (14 050 ton/år kväve samt 230 ton/år fosfor). Belastningen från skogsmark ingår enbart i bakgrund och den antropogena belastningen från hyggen bidrar endast med 1 540 ton/år kväve och 20 ton/år fosfor. Bottenhavet, Egentliga Östersjön och Kattegatt är de bassänger som tar emot mest kväve av Sveriges totala belastning på havet (28 560 ton/år, 26 150 ton/år respektive 27 700 ton/år, vilket motsvarar cirka 25 % vardera). I Bottenhavet är dock en stor del av belastningen naturlig bakgrundsbelastning. Egentliga Östersjön och Kattegatt tar emot mest av Sveriges antropogena belastning av kväve, 30 % respektive 31 %. I jämförelse mellan vilka havsbassänger som är mest belastade av fosfor, så är det Bottenhavet som tar emot mest (1 040 ton/år eller 32 % av den totala belastningen). Strax under en fjärdedel av Sveriges totala belastning på havet, rinner till Egentliga Östersjön (790 ton/år) och omkring en femtedel belastar Bottenviken och Kattegatt (640 respektive 620 ton/år). Aktionsplanen för Östersjön (Baltic Sea Action Plan, BSAP) anger utsläppsmål för alla länder kring Östersjön, med syfte att nå ”God miljöstatus” i Östersjön och Kattegatt. För fosfor är målet uppnått i alla bassänger utom Egentliga Östersjön, där det är ett utmanande mål och det kommer att bli mycket svårt att minska fosforbelastningen under belastningstaket (308 ton/år). Det krävs omfattande åtgärder av de antropogena källorna, men dessutom så utgör bakgrundsbelastningen en betydande del av den totala belastningen. Total nettobelastning av fosfor till Egentliga Östersjön är 790 ton enligt dessa beräkningar, varav 230 ton är beräknat som bakgrundsbelastning. För att Egentliga Östersjön ska kunna uppnå god miljöstatus med avseende på övergödning kommer det även att behövas åtgärder i Östersjöns andra delbassänger. På grund av skillnader i metoder och indata, är det inte möjligt att direkt jämföra hur belastningen från diffusa källor har ändrats sedan PLC6 (2014). En metodikskillnad som särskilt bör noteras är beräkningen av bakgrundsbelastningen av fosfor från jordbruksmark. Beräkningsmetoden för bakgrunden har utvecklats mellan olika PLC-beräkningar, vilket också lett till starkt skiftande resultat för bakgrundsbelastningen. I PLC6-beräkningen blev bakgrundsbelastningen hög eftersom en förändring i modellen visade sig ha gett en förmodad alltför stor förlust av partikulärt fosfor. Detta har korrigerats i den senaste modellversionen (PLC6.5 och PLC7) vilket är en av anledningarna till att bakgrundsbelastningen är lägre i PLC7 än i PLC6. Det är dock viktigt att notera att bakgrundsberäkningen alltid kommer att vara osäker eftersom den dels i mycket stor utsträckning bygger på antaganden och eftersom det dels saknas mätdata för att jämföra beräkningsresultaten med. För att resultaten för de diffusa källorna ska vara jämförbara mellan åren krävs att det görs en omräkning, antingen med gamla PLC-data och med den nya metoden eller med nya data och med den gamla metoden. En sådan omräkning kan bringa klarhet i hur mycket av skillnaden i resultaten som beror av förfinade indata eller förbättrade metoder och hur mycket som beror på implementerade åtgärder för att minska belastningen. Belastningen från punktkällorna beräknas på samma sätt som i PLC6. Utsläppen till havet i PLC 7 (2017) från avloppsreningsverk är ungefär i samma storleksordning som i PLC 6 (år 2014) 230 respektive 240 ton fosfor samt 14 000 ton kväve (netto). Industrier har minskat sin belastning på havet och svarar 2017 för 210 ton fosfor samt 3 320 ton kväve, jämfört med 250 fosfor och 3 800 ton kväve år 2014. The Swedish Agency for Marine and Water Management has commissioned SMED to evaluate nitrogen and phosphorus loads from different sources, on lakes, watercourses and the sea across Sweden for the year 2017. The aim is to provide the basis for Sweden's national reporting to the HELCOM "Pollution Load Compilation 7 - PLC7" and to support water management work in Sweden. This report, together with its background reports, presents results, source data, and calculation methods with a level of detail intended to achieve full transparency and traceability as well as to permit further applicability in Swedish water management. The calculations followed, as far as possible, the methodology developed in the previous project (PLC6). Large amounts of data have been processed and calculated to provide comprehensive information for the whole of Sweden divided into approximately 24 500 water bodies. The results are freely available via the web tool ”Technical Calculation System: Water” (TBV, tbv.smhi.se). The results are presented as gross and net nutrient loads, for the total, anthropogenic and background load. Gross loads are the amount of nutrients released at the source of a watercourse or lake. Net loads are the proportion of the gross loads that reaches the sea. The two largest sources of the total nutrient loads to the sea for both nitrogen and phosphorus (net load) constitute of agricultural and forest land, with 33 400 and 31 670 tonnes/year of nitrogen, respectively, and 1 010 and 870 tonnes/year of phosphorus in 2017. Together, these sources account for about 60 % of the total load. For anthropogenic loads, agriculture is the largest source (19 470 tonnes/year and 710 tonnes/year of phosphorus), followed by emissions from sewage treatment plants (14 050 tonnes of nitrogen and 230 tonnes/year of phosphorus). Nutrient loads from growing forests are only included in the background loads, while clear cuts, which are classified as an anthropogenic load, only contributes 1 540 tonnes/year of nitrogen and 20/year tonnes of phosphorus. The Bothnian Sea, the Baltic Proper and the Kattegat are the sea basins that receive the most nitrogen from Sweden's total loads (28 560 tonnes/year, 26 150 tonnes/year and 27 700 tonnes/year, respectively, or approximately 25% each). In the Bothnian Sea, however, the greater part of the loads are natural background loads. The Baltic Proper and the Kattegat receive most of Sweden's anthropogenic nitrogen load, 30% and 31% respectively. For phosphorus, the Bothnian Sea is the basin that receives the largest load (1 040 tonnes/year or 32% of the total load). Just under a quarter of Sweden's total phosphorus load reaches the Baltic Proper (790 tonnes/year) and about one fifth reaches the Bothnian Bay and the Kattegat (640 and 620 tonnes/year respectively). The Baltic Sea Action Plan (BSAP) provides emission targets, with the aim of achieving good environmental status in the Baltic Sea and the Kattegat. For phosphorus, the target has been achieved in all sea basins except the Baltic Proper, where the target is challenging, and it will be difficult to reduce the phosphorus load below the target (308 tonnes/year). This requires extensive measures for the anthropogenic sources, but further challenging is that the background loads are a significant proportion of the total loads. The total net loads of phosphorus to the Baltic Proper are 760 tonnes/year of which 230 tonnes/year are calculated as background loads. For the Baltic Proper to be able to achieve good environmental status with regard to eutrophication, measures will also be needed in the other sub-basins of the Baltic Sea. Due to differences in methods and input data, it is not possible to directly compare how the loads from diffuse sources have changed since PLC6 (2014). One difference in methodology that should be noted is the calculation of the background load of phosphorus from agricultural land. The background calculation method has been developed between different PLC calculations, which has also led to strongly varying results for the background load. In PLC6 a high background load was calculated because an update of the model turned out to give a presumably too high loss of particulate phosphorus. This has been corrected in the latest model version (PLC6.5 and PLC7) which is one of the reasons why the background load in PLC7 is lower than I PLC6. It is however important to note that the background calculation always will be uncertain because the calculations, to a large extent, are based on assumptions and because data to compare the calculation results with are lacking. To be able to compare diffuse loads between the years there is a need for recalculation of old PLC data, either recalculation of the old data based on the new methodology or based on new data and the old methodology. This kind of recalculations may clarify the effect of implemented measures to reduce the load, or if the changes are mainly due to refined input and improved calculation methods. Nutrient loads from point sources are calculated using the same methodology as in previous calculations. Emissions to the sea in PLC 7 (2017) from sewage treatment plants are approximately of the same magnitude as in PLC 6 (in 2014) 230 and 240 tonnes of phosphorus and 14 000 tonnes of nitrogen (net). Industries have reduced their nutrient loads to the sea and are responsible for 210 tonnes of phosphorus in 2017 and 3 320 tonnes of nitrogen, compared with 250 phosphorus and 3 800 tonnes of nitrogen in 2014. |