FDM 3D printing of conductive polymer nanocomposites : A novel process for functional and smart textiles

Autor: Hashemi Sanatgar, Razieh
Jazyk: angličtina
Rok vydání: 2019
Předmět:
vidhäftning
modélisation CAO
carbon black
piezoresistiv
压力传感器
datorstödd designmodellering
Piezoresistive
Textile
Rubber and Polymeric Materials

Fused deposition modeling
impression 3D
tryck-/kraftsensorer
附着力
导电性高分子复合材料
Pressure/Force sensors
noir de carbone Ketjen
压阻
applicering
电脑协助建模
modélisation par dépôt de filament fondu
nanotube de carbone à parois multiples
nanocomposite en polymère conducteur
3D-skrivare
统计学设计
statistisk design
Deposition
capteurs de pression / force
konduktiva polymera nanokompositer
炭黑
adhérence
conception statistique
多壁碳纳米管
Computer-aided design modeling
Textil-
gummi- och polymermaterial

3D printing
piézorésistif
沉积法
Multi-walled carbon nanotube
熔融沉积成型;
Adhesion
Statistical design
dépôt
Conductive polymer nanocomposite
flerväggiga kolnanorör
Popis: The aim of this study is to get the benefitof functionalities of fused deposition modeling(FDM) 3D printed conductive polymer nanocomposites (CPC) for the developmentof functional and smart textiles. 3D printing holds strong potential for the formation of a new class of multifunctional nanocomposites. Therefore, developmentand characterization of 3D printable functional polymers and nanocomposites areneeded to apply 3D printing as a novel process for the depositionof functional materials on fabrics. This method will introduce more flexible, resource-efficient and cost-effectivetextile functionalization processes than conventional printing process like screen and inkjet printing. The goal is to develop an integrated or tailored production process for smart and functional textiles which avoid unnecessary use of water, energy, chemicals and minimize the waste to improve ecological footprint and productivity. The contribution of this thesis is the creation and characterization of 3D printable CPC filaments, deposition of polymers and nanocomposites on fabrics, and investigation of the performance of the 3D printed CPC layers in terms of functionality. Firstly, the 3D printable CPC filaments were created including multi-walled carbon nanotubes (MWNT) and high-structured carbon black (Ketjenblack) (KB) incorporated into a biobased polymer, polylactic acid (PLA), using a melt mixing process. The morphological, electrical, thermal and mechanical properties of the 3D printer filaments and 3D printed layers were investigated. Secondly, the performance of the 3D printed CPC layers was analyzed under applied tension and compression force. The response for the corresponding resistance change versus applied load was characterized to investigate the performance of the printed layers in terms of functionality. Lastly, the polymers and nanocomposites were deposited on fabrics using 3D printing and the adhesion of the deposited layers onto the fabrics were investigated. The results showed that PLA-based nanocomposites including MWNT and KB are 3D printable. The changes in morphological, electrical, thermal, and mechanical properties of nanocomposites before and after 3D printing give us a great understandingofthe process optimization. Moreover, the results demonstrate PLA/MWNT and PLA/KB as a good piezoresistive feedstock for 3D printing with potential applications in wearable electronics, soft robotics, and prosthetics, where complex design, multi-directionality, and customizability are demanded. Finally, different variables of the 3Dprinting process showed a significanteffect on adhesion force of deposited polymers and nanocomposites onto fabrics which has been presented by the best-fittedmodel for the specific polymer and fabric. Le but de cette étude est d’exploiter les fonctionnalités des nano-Composites Polymères Conducteurs (CPC) imprimés en utilisant la technologie FDM (modélisation par dépôt de monofilament en fusion) pour le développement de textiles fonctionnels et intelligents. L’impression 3D présente un fort potentiel pour la création d’une nouvelle classe de nanocomposites multifonctionnels. Par conséquent, le développement et la caractérisation des polymères et nanocomposites fonctionnels et imprimables en 3D sont nécessaires afin d’utiliser l’impression 3D comme nouveau procédé de dépôt de ces matériaux sur textiles. Cette technique introduira des procédés de fonctionnalisation de textiles plus flexibles, économes en ressources et très rentables, par rapport aux procédés d'impression conventionnels tels que la sérigraphie et le jet d'encre. L’objectif est de développer une méthode de production intégrée et sur mesure pour des textiles intelligents et fonctionnels, afin d’éviter toute utilisation d'eau, d'énergie et de produits chimiques inutiles et de minimiser les déchets dans le but d’améliorer l'empreinte écologique et la productivité. La contribution apportée par cette thèse consiste en la création et la caractérisation de filaments CPC imprimables en 3D, le dépôt de polymères et de nanocomposites sur des tissus et l’étude des performances en termes de fonctionnalité des couches de CPC imprimées en 3D. Dans un premier temps, nous avons créé des filaments de CPC imprimables en 3D, notamment des nanotubes de carbone à parois multiples (MWNT) et du noir de carbone à haute structure (Ketjenblack) (KB), incorporés dans de l'acide polylactique (PLA) à l'aide d'un procédé de mélange à l'état fondu. Les propriétés morphologiques, électriques, thermiques et mécaniques des filaments et des couches imprimées en 3D ont été étudiées. Deuxièmement, nous avons déposé les polymères et les nanocomposites sur des tissus à l’aide d’une impression 3D et étudié leur adhérence aux tissus. Enfin, les performances des couches de CPC imprimées en 3D ont été analysées sous tension et force de compression appliquées. La variation de la valeur de la résistance correspondant à la charge appliquée permet d’évaluer l'efficacité des couches imprimées en tant que capteur de pression / force. Les résultats ont montré que les nanocomposites à base de PLA, y compris MWNT et KB, sont imprimables en 3D. Les modifications des propriétés morphologiques, électriques, thermiques et mécaniques des nanocomposites avant et après l’impression 3D nous permettent de mieux comprendre l’optimisation du procédé. De plus, différentes variables du procédé d’impression 3D ont un effet significatif sur la force d'adhérence des polymères et des nanocomposites déposés sur les tissus. Nous avons également développé des modèles statistiques fiables associés à ces résultats valables uniquement pour le polymère et le tissu de l’étude. Enfin, les résultats démontrent que les mélanges PLA/MWNT et PLA/KB sont de bonnes matières premières piézorésistives pour l’impression 3D. Elles peuvent être potentiellement utilisées dans l’électronique portable, la robotique molle et la fabrication de prothèses, où une conception complexe, multidirectionnelle et personnalisable est nécessaire. Syftet med denna studie är att kunna dra nytta av funktionaliteten hos fused deposition modeling (FDM) 3D-skrivna konduktiva polymera nanokompositer (CPC) för utveckling av funktionella och smarta textilier. 3D-skrivare har stor potential, som process, att kunna skapa en ny klass av multifunktionella nanokompositer. Därför behövs utveckling och karakterisering av funktionella polymerer och nanokompositer som går att använda med en 3D-skrivare för att kunna använda 3D-skrivare som en ny process för applicering av funktionella material på textil. Den här metoden introducerar textila funktionaliseringsprocesser som är mer flexibla, resurseffektiva och kostnadseffektiva jämfört med konventionella tryckmetoder som schablontryck och inkjet. Målet är att utveckla en integrerad eller skräddarsydd produktionsprocess för smarta och funktionella textilier som undviker onödig användning av vatten, energi och kemikalier samt som minimerar avfall, för förbättrat ekologiskt fotavtryck och produktivitet. Den här uppsatsen bidrar med skapande och karakterisering av CPC-filament som går att 3D-skriva, applicering av polymerer och nanokompositer på textil och undersökning av de 3D-skrivna CPC-lagrens prestation vad gäller funktionalitet. Först skapades CPC-filament som var avsedda för 3D-skrivare genom att flerväggiga kolnanorör (MWNT) och high structured carbon black (Ketjenblack)(KB) inkorporerades i en biobaserad polymer, polymjölksyra (PLA), genom en smältblandningsprocess. De morfologiska, elektriska, termiska och mekaniska egenskaperna hos filamenten och de 3D-skrivna CPC-lagren undersöktes. Därefter analyserades de 3D-skrivna CPC-lagrens prestanda under applicerade spänning- respektive kompressionskrafter. För att utvärdera de utskrivna lagrens effektivitet som tryck-/kraftsensor undersöktes resistansförändringen mot applicerad belastning. Slutligen användes 3D-skrivare för att applicera polymererna och nanokompositerna på textil och lagrens vidhäftningsförmåga på textilen undersöktes. Resultaten visade att de PLA-baserade nanokompositerna med MWNT och KB går att använda för 3D-skrivare. Förändringarna i de morfologiska, elektriska, termiska och mekaniska egenskaperna hos nanokompositerna till följd av 3D-skrivningen ger oss stor förståelse kring processoptimering. Dessutom visar resultaten att PLA/MWNT- och PLA/KB- kompositer är bra piezoresistiva råmaterial för 3D-skrivare med potentiella tillämpningar inom bärbar elektronik, mjuk robotik och proteser, där det krävs komplex design, anpassningsbarhet och möjlighet till skräddarsydda lösningar. Till sist visades att olika variabler i 3D-skrivarprocessen har signifikant påverkan på polymerernas och nanokompositernas vidhäfningsförmåga på textil, vilket presenteras med den bäst anpassade modellen för den specifika polymeren och textilen. 此篇博士论文致力于使用熔融沉积成型3D打印的导电性高分子纳米复合材料在功能和智能纺织品应用上的优越性的研究。3D打印在塑造新型多功能纳米复合材料方面极具前景。因此,开发和表征可用于3D打印的高分子材料和纳米高分子复合材料对使用3D打印在纺织品表面沉积功能材料的新工艺是十分必要的。相较于传统的印刷工艺, 譬如丝网印刷和喷墨打印,使用3D打印在纺织品表面沉积功能材料的新工艺将引入更灵活的,高资源能效的和经济有效的纺织品功能化工艺。此论文的目标是致力于整合的或者量身定做的智能化和功能化纺织品的生产流程。此生产流程避免使用不必要的水源,能源和化学品, 减少废料,因此生态足迹和生产效率得到改进。 此博士论文在创造和表征可3D打印的导电性高分子纳米复合材料,在纺织品上沉积高分子和高分子纳米复合材料,和在纺织品表面3D打印的导电性高分子纳米复合材料器件的功能性研究上具有开创性。首先,通过使用熔融混合法,多壁碳纳米管和高结构炭黑(ketjenblack)被掺入了可3D打印的聚乳酸中。聚乳酸是一种基于生物的高分子材料。其次,此论文对3D打印机的打印丝以及打印出的高分子层的形貌,电,热和力学性能进行了研究。其次,此论文对3D打印的导电性高分子纳米复合材料器件在拉力和压力下的表现进行了分析。器件对应于负载的电阻改变得到表征,可有效用于压力感应器。最后,我们使用3D打印在纺织品表面沉积了高分子和导电性高分子纳米复合材料,并研究了沉积材料与纺织品基体之间的表面附着力。 研究结果表明,掺入多壁碳纳米管和高结构炭黑的聚乳酸导电性高分子纳米复合材料可用于3D打印。我们可以通过其形貌,电,热以及力学性能在3D打印前和3D打印后的改变来理解和优化工艺。并且,研究结果表明,用于3D打印的聚乳酸/多壁碳纳米管和聚乳酸/高结构炭黑复合材料具有良好的压阻反馈,在可穿戴设备,柔软机器人和假体应用中具有前景,尤其是在设计复杂,多方向,和需要定制的应用上。最后,不同的3D打印参数对高分子和高分子纳米复合材料在纺织品上的附着力有重要影响。打印参数对附着力的影响可通过针对不用的高分子和纺织品基体使用最优化模型得到。
Databáze: OpenAIRE