Popis: |
This bachelor thesis within mathematical statistics studies the possibility of modelling the renewal probability for commercial non-life insurance policyholders. The project was carried out in collaboration with the non-life insurance company If P&C Insurance Ltd. at their headquarters in Stockholm, Sweden. The paper includes an introduction to underlying concepts within insurance and mathematics and a detailed review of the analytical process followed by a discussion and conclusions. The first stages of the project were the initial collection and processing of explanatory insurance data and the development of a logistic regression model for policy renewal. An initial model was built and modern methods of mathematics and statistics were applied in order obtain a final model consisting of 9 significant characteristics. The regression model had a predictive power of 61%. This suggests that it to a certain degree is possible to predict the renewal probability of non-life insurance policyholders based on their characteristics. The results from the final model were ultimately translated into a measure of price sensitivity which can be implemented in both pricing models and CRM systems. We believe that price sensitivity analysis, if done correctly, is a natural step in improving the current pricing models in the insurance industry and this project provides a foundation for further research in this area. Detta kandidatexamensarbete inom matematisk statistik undersöker möjligheten att modellera förnyelsegraden för kommersiella skadeförsärkringskunder. Arbetet utfördes i samarbete med If Skadeförsäkring vid huvudkontoret i Stockholm, Sverige. Uppsatsen innehåller en introduktion till underliggande koncept inom försäkring och matematik samt en utförlig översikt över projektets analytiska process, följt av en diskussion och slutsatser. De huvudsakliga delarna av projektet var insamling och bearbetning av förklarande försäkringsdata samt utvecklandet och tolkningen av en logistisk regressionsmodell för förnyelsegrad. En första modell byggdes och moderna metoder inom matematik och statistik utfördes för att erhålla en slutgiltig regressionsmodell uppbyggd av 9 signifikanta kundkaraktäristika. Regressionsmodellen hade en förklaringsgrad av 61% vilket pekar på att det till en viss grad är möjligt att förklara förnyelsegraden hos försäkringskunder utifrån dessa karaktäristika. Resultaten från den slutgiltiga modellen översattes slutligen till ett priskänslighetsmått vilket möjliggjorde implementering i prissättningsmodeller samt CRM-system. Vi anser att priskänslighetsanalys, om korrekt genomfört, är ett naturligt steg i utvecklingen av dagens prissättningsmodeller inom försäkringsbranschen och detta projekt lägger en grund för fortsatta studier inom detta område. |