MODELO AUTORREGRESIVO BILINEAL APLICADO A LA PREDICCIÓN MENSUAL DE CAUDALES EN COLOMBIA

Autor: Cadavid, Juan David, Carvajal, Luis Fernando
Jazyk: Spanish; Castilian
Rok vydání: 2013
Předmět:
Zdroj: Revista Ingenierías Universidad de Medellín, Volume: 12, Issue: 23, Pages: 23-33, Published: DEC 2013
Popis: Se aplica un modelo estocástico bilineal, el cual inicialmente es propuesto para análisis de retornos financieros y otros sistemas complejos combinando la alta no linealidad y multiplicidad del ruido. Este modelo, por su carácter aleatorio, no tiene componente determinística que permita considerar la persistencia de los caudales en una aplicación a la Hidrología. Por lo tanto, se propone el acoplamiento entre la parte determinística de un modelo autorregresivo de orden 2 y el modelo estocástico bilineal como componente aleatorio, y se obtiene un modelo autorregresivo bilineal (MAB). El MAB se empleó para la predicción de caudales en ventanas de 3, 6 y 12 meses en 12 ríos de Colombia de diferentes regiones del país. El MAB tiene una estructura simple y muestra una mejora sustancial en la disminución de los errores para los caudales máximos y mínimos en el período de validación respecto de los modelos estocásticos tradicionales. A bilinear stochastic model is applied, which is initially proposed for analyzing financial returns and other complex systems by combining high non-linearity and multiplicity of noise. Due to its random character, this model does not have a deterministic component which allows considering persistence of stream flows in a hydrology application. Therefore, the combination of a deterministic segment of an order 2 auto-regressive model and the bilinear stochastic model as the random component, and a bilinear auto-regressive model (BAM) is obtained. The BAM was employed to predict stream flows in windows of 3, 6, and 12 months in 12 rivers from several regions of Colombia. The BAM exhibits a simple structure and shows a substantial improvement in error reduction for maximum and minimum flows during the validation period compared to traditional stochastic models.
Databáze: OpenAIRE