Popis: |
The pathogenesis of osteoarthritis (OA) involves articular cartilage, synovial tissue and subchondral bone and is therefore a disease of the whole joint. OA is characterized by progressive degradation of cartilage, synovial inflammation, osteophyte formation and subchondral bone sclerosis. Cartilage-surrounding tissues are innervated by tyrosine hydroxylase (TH)-positive sympathetic nerve fibers with the most important sympathetic neurotransmitter norepinephrine (NE) detected in the synovial fluid of OA patients. Furthermore, adrenergic receptors are expressed in different knee joint tissues. Most in vitro studies indicate a potential role of the β2-adrenergic receptor, which has been not investigated during OA pathogenesis in vivo. The role of the sympathetic nervous system (SNS) in OA progression has not yet been studied. Therefore, the objective of this study was to analyze how the SNS and NE influence the MSC dependent cartilage regeneration in vitro and the OA pathogenesis and manifestation in vivo. In the first part of this study, the effect of NE on the chondrogenesis of sASC, which are known to play an important role in cartilage regeneration was analyzed in vitro. In the second part of this study, the role of the SNS was studied in vivo in mice that were sympathectomized chemically followed by surgically induced OA. The specific focus was on the β2-adrenergic receptor effects on OA pathogenesis, which were analyzed in β2-adrenergic receptor-deficient mice. The in vitro experiments have shown that NE reduced the chondrogenic potential of sASCs by decreasing the expression of type II collagen and sGAG. NE mediated these effects mainly by the α2-AR signalling. Furthermore, NE treatment led to activation of the ERK1/2 signal pathway. These findings suggested that the sympathetic neurotransmitter NE might suppress the chondrogenic capacity of MSC and their dependent cartilage regeneration and may also play a role in OA progression and manifestation. The in vivo study has shown that sympathectomy reduced synovial TH-positive nerve fibers in the synovium and the NE concentration in the spleen significantly. In WT mice, DMM leads to increased NE concentrations in the spleen compared to sham mice indicating an increased SNS activity after mechanical stress or inflammation due to DMM. Sympathectomy leads to less pronounced cartilage degeneration (OARSI score) after DMM compared to DMM in WT mice. Furthermore, the release of the type II collagen degradation fragment CTX-II was abolished in Syx DMM mice compared to WT DMM mice, suggesting that less SNS activity due to sympathectomy reduced the cartilage degeneration during OA pathogenesis. Similarly, sympathectomy decreased the synovitis score significantly after DMM compared to DMM in WT mice. Synovitis in WT mice was accompanied by increased MMP-13 expression in the synovium after DMM, compared to Syx mice. Cartilage degeneration seemed to be driven mainly by the increased synovial inflammation accompanied by an increased MMP13 expression in synoviocytes and not in chondrocytes. The pathological changes in synovium and cartilage might also be linked to each other, as indicated by the moderate correlation between the synovial inflammation (synovitis score) and cartilage degeneration (OARSI score). Subchondral bone volume as well the thickness of the subchondral bone plate (SCBP) and calcified cartilage (CC) were increased in Syx mice compared to WT after DMM. The data on DMM induction in β2-AR deficient mice revealed that the β2-AR signaling is involved in cartilage degeneration and the aggravated subchondral bone changes as these mice had less pronounced cartilage degeneration compared to WT mice. While the cartilage degeneration was similar, the subchondral bone changes were more pronounced in β2-AR deficient mice compared to the Syx mice. Overall, the SNS had differential effects in cartilage, synovium and subchondral bone. A reduced SNS activity by sympathectomy attenuated cartilage degeneration and synovitis but aggravated the OA specific subchondral bone changes. These findings provide new insights into the development of novel therapeutic strategies for OA by targeting the SNS in a tissue- specific manner. |