Popis: |
In Reaktion auf zellulären Stress wie etwa Schädigungen der DNA oder die vermehrte Aktivität von Onkogenen aktivieren vorgeschaltete Signalkaskaden den Transkriptionsfaktor (TF) p53. Dieser kann über die Aktivierung der Expression von Zielgenen wiederum die Zellteilung stoppen, die Reparatur von DNA Schäden initiieren oder in schweren Fällen die Eliminierung der Zelle durch Apoptose einleiten. Ist p53 durch Mutationen deaktiviert, können sich entartete somatische Zellen vermehren und in der Folge Krebs entstehen. In Wirbeltieren finden sich neben p53 mit p63 und p73 zwei weitere TFs, welche während der Evolution aus dem gleichen gemeinsamen Vorläufer durch Genduplikationen hervorgegangen sind. Die drei TFs sind modular aufgebaut und alle Isoformen verfügen jeweils minimal über eine DNA Bindungsdomäne (DBD) und eine Tetramerisierungsdomäne (TD). Werden die p53 ähnlichen TFs aktiviert, lagern sie sich über die TD vermittelt zu Tetrameren zusammen, wodurch ihre DBDs kooperativ an DNA Sequenzmotive binden können. Die DBD ist auch über große phylogenetische Abstände hinweg hoch konserviert, wodurch bereits gezeigt werden konnte, dass auch primitive vielzellige Tiere bereits Homologe dieser TF Familie besitzen. Im Vergleich zur DBD variiert die Proteinsequenz der TD deutlich stärker, was andeutet, dass deren Struktur im Laufe der Evolution erhebliche Veränderungen durchlaufen hat. Diese Veränderungen aufzuklären ist das übergeordnete Forschungsvorhaben zu dem diese Dissertationsschrift beiträgt. Ciona intestinalis (C.int.) ist eine Spezies aus dem Unterstamm der Manteltiere. Diese sind die engsten lebenden Verwandten der Wirbeltiere und C.int. ist ein populärer Modelorganismus für die Erforschung der Embryonalentwicklung. Sein Genom kodiert für zwei p53 ähnliche TFs, welche mit p53/p73-a und p53/p73-b bezeichnet werden. Die Struktur ihrer TDs wurde im Rahmen der vorliegenden Arbeit mittels Kernspinresonanz (NMR) Spektroskopie untersucht. Die TD von menschlichem p53 (hp53) ist ein Dimer aus Dimeren. Jedes Monomer formt einen beta-Strang und eine alpha-Helix. Im primären Dimer lagern diese sich so zusammen, dass ein beta-Faltblatt entsteht und die alpha-Helices mit entgegen gesetzter Orientierung der Länge nach aneinander packen. Zwei dieser Dimer lagern sich dann so zum Tetramer zusammen, dass zwischen pol-ständigen beta-Faltblättern ein Bündel aus vier Helices entsteht. Dieses Motiv ist auch in den TDs der Ciona Proteine hochkonserviert und wird im Folgenden als Kern?TD bezeichnet. In den TDs von menschlichem p63 und p73 (hp63 und hp73) verfügt jedes Monomer an seinem C-terminus noch über eine zweite Helix. Die zweiten Helices eines jeden Dimers greifen wie Klammern um das jeweils andere primäre Dimer und stabilisieren so das Tetramer. Entscheidend für die stabile Anbindung an die Kern?TD ist dabei ein charakteristisches Tyrosin-Arginin (YR) Motiv in der zweiten Helix, welches sich auch in der Sequenz der TD von C.int. p53/p73-a wiederfindet. Analysen der Sekundärstruktur auf Basis von NMR Experimenten ergaben jedoch, dass die TD von C.int. p53/p73-a bei 25°C keine zweite Helix ausbildet. Mit Hilfe von chimären TD Peptiden, in denen Teile der Ciona Sequenz gegen die entsprechenden Abschnitte von hp73 ausgetauscht wurden, konnte gezeigt werden, dass die Kern TD von C.int. p53/p73-a fähig ist eine zweite Helix zu stabilisieren und hierfür neben dem YR Motiv auch der Sequenzabschnitt zwischen erster und zweiter Helix entscheidend ist. Stabilisierende Substitutionen in diesem Bereich bewirkten ebenso wie ein Absenken der Temperatur die Ausbildung einer zweiten Helix, welche jedoch im Gegensatz zu jener in hp73 nur transient faltet und auch nicht essentiell für die Bildung des Tetramers ist, wohl aber dessen Stabilität erhöht. Spezifisch in der Entwicklungslinie von Ciona kam es dazu, dass eine, für eine entsprechende Vorläuferversion von C.int. p53/p73-a kodierende, mRNA spontan zurück in DNA übersetzt und ins Genom eingefügt wurde. Die durch diese Retrotransposition erzeugte neue Genkopie C.int. p53/p73-b muss demnach ursprünglich einmal für die gleiche Proteinsequenz kodiert haben, innerhalb der TD finden sich konservierte Reste jedoch nur im Bereich der Kern TD. Von der TD von C.int. p53/p73-b wurde die molekulare Struktur in freier Lösung mittels NMR ermittelt. Diese zeigte, dass interessanterweise in der TD von C.int. p53/p73-b jedes Monomer am C-terminus eine stabil gefaltete, zweite Helix besitzt. Obwohl diese zweite Helix sich aus einer Sequenz faltet, die keinerlei Sequenzhomologie zu homologen Proteinen aus Wirbeltieren aufweist, lagert sie sich in einer Position auf die Kern TD, welche der in hp73 sehr nahe kommt. Da die primären Dimere der Kern TD aber anders als in hp63 und hp73 durch Salzbrücken miteinander verbunden sind, ist die zweite Helix jedoch nicht essentiell, um das Tetramer zu stabilisieren. Vermutlich kommt der zweiten Helix von C.int. p53/p73-b vielmehr u.a. die Aufgabe zu die Bildung von Heterotetrameren aus C.int. p53/p73-a und –b zu unterbinden. Zusammengenommen zeigen die Ergebnisse, dass die Architektur der TD mit zweiter Helix bereits der Prototyp für die TDs aller p53 ähnlichen Proteine der Wirbel- und Manteltiere war und die als eine Art Klammer das Tetramer stabilisierende zweite Helix sich nicht erst während der Evolution der Wirbeltiere entwickelt hat. |