Data-centric serverless cloud architecture

Autor: Ustiugov, Dmitrii
Přispěvatelé: Grot, Boris, Barbalace, Antonio, Bugnion, Edouard
Jazyk: angličtina
Rok vydání: 2022
Popis: Serverless has become a new dominant cloud architecture thanks to its high scalability and flexible, pay-as-you-go billing model. In serverless, developers compose their cloud services as a set of functions while providers take responsibility for scaling each function’s resources according to traffic changes. Hence, the provider needs to timely spawn, or tear down, function instances (i.e., HTTP servers with user-provider handles), which cannot hold state across function invocations. Performance of a modern serverless cloud is bound by data movement. Serverless architecture separates compute resources and data management to allow function instances to run on any node in a cloud datacenter. This flexibility comes at the cost of the necessity to move function initialization state across the entire datacenter when spawning new instances on demand. Furthermore, to facilitate scaling, cloud providers restrict the serverless programming model to stateless functions (which cannot hold or share state across different functions), which lack efficient support for cross-function communication. This thesis consists of four following research contributions that pave the way for a data-centric serverless cloud architecture. First, we introduce STeLLAR, an opensource serverless benchmarking framework, which enables an accurate performance characterization of serverless deployments. Using STeLLAR, we study three leading serverless clouds and identify that all of them follow the same conceptual architecture that comprises three essential subsystems, namely the worker fleet, the scheduler, and the storage. Our analysis quantifies the aspect of the data movement problem that is related to moving state from the storage to workers when spawning function instances (“cold-start” delays). Also, we study two state-of-the-art production methods of crossfunction communication that involve either the storage or the scheduler subsystems, if the data is transmitted as part of invocation HTTP requests (i.e., inline). Second, we introduce vHive, an open-source ecosystem for serverless benchmarking and experimentation, with the goal of enabling researchers to study and innovate across the entire serverless stack. In contrast to the incomplete academic prototypes and proprietary infrastructure of the leading commercial clouds, vHive is representative of the leading clouds and comprises only fully open-source production-grade components, such as Kubernetes orchestrator and AWS Firecracker hypervisor technologies. To demonstrate vHive’s utility, we analyze the cold-start delays, revealing that the high cold-start latency of function instances is attributable to frequent page faults as the function’s state is brought from disk into guest memory one page at a time. Our analysis further reveals that serverless functions operate over stable working sets - even across function invocations. Third, to reduce the cold-start delays of serverless functions, we introduce a novel snapshotting mechanism that records and prefetches their memory working sets. This mechanism, called REAP, is implemented in userspace and consists of two phases. During the first invocation of a function, all accessed memory pages are recorded and their contents are stored compactly as a part of the function snapshot. Starting from the second cold invocation, the contents of the recorded pages are retrieved from storage and installed in the guest memory before the new function instance starts to process the invocation, allowing to avoid the majority of page faults, hence significantly accelerating the function’s cold starts. Finally, to accelerate the cross-function data communication, we propose Expedited Data Transfers (XDT), an API-preserving high-performance data communication method for serverless. In production clouds, function transmit intermediate data to other functions either inline or through a third-party storage service. The former approach is restricted to small transfer sizes, the latter supports arbitrary transfers but suffers from performance and cost overheads. XDT enables direct function-to-function transfers in a way that is fully compatible with the existing autoscaling infrastructure. With XDT, a trusted component of the sender function buffers the payload in its memory and sends a secure reference to the receiver, which is picked by the load balancer and autoscaler based on the current load. Using the reference, the receiver instance pulls the transmitted data directly from sender’s memory, obviating the need for intermediary storage.
Databáze: OpenAIRE