Calculation model for optimization of hydrogen storage

Autor: Karlsson, Alice
Jazyk: švédština
Rok vydání: 2022
Předmět:
Popis: This work aims and is based on a desire by Euromekanik AB and PowerCell AB to design a calculation model for energy optimization and dimensioning of hydrogen storage. For this, a simulation tool has been created, which in this work is evaluated based on a project Euromekanik and PowerCell have with the brewery ÅBRO. ÅBRO requests the results of 10 trucks that are to be refueled with self-produced hydrogen, the hydrogen is also to be converted and support the own electricity consumption. The hydrogen system broadly consists of an electrolyser, fuel cell and hydrogen storage. The questions that were asked and answered was: How should the components be dimensioned? How should the warehouse be dimensioned? Which scenario is the most energetically and financially profitable? What could further expansion of energy production look like? The scenarios were divided into three different ones with different sizes of electrolyser. After that, they were divided into a and b scenarios, which had different sizes of fuel cell. When the analysis was completed, the two best scenarios with the optimal storage size was selected, then an analysis is made of how the installation of a wind turbine would have worked in combination with these systems in comparison to expanding the solar cell plant. The result obtained is that the method part answers how a calculation model for energy optimization and dimensioning of hydrogen storage can look like. Scenario 2a with storage size of 1 ton is best from an economic and energy perspective. However, if energy production were to be expanded further, scenario 3a with a storage size of 1.5 tones would be best from an energy perspective.
Databáze: OpenAIRE