Popis: |
We argue that in order to account for the muon anomalous magnetic moment g-2, dark matter and LHC data, nonuniversal gaugino masses Mi at the high scale are required in the framework of the minimal supersymmetric standard model. We also need a right-handed smuon μR with a mass around 100 GeV, evading LHC searches due to the proximity of a neutralino χ10 several GeV lighter which allows successful dark matter. We discuss such a scenario in the framework of an SU(5) grand unified theory (GUT) combined with A4 family symmetry, where the three 5 representations form a single triplet of A4 with a unified soft mass mF, while the three 10 representations are singlets of A4 with independent soft masses mT1,mT2,mT3. Although mT2 (and hence μR) may be light, the muon g-2 and relic density also requires light M1≃250 GeV, which is incompatible with universal gaugino masses due to LHC constraints on M2 and M3 arising from gaugino searches. After showing that universal gaugino masses M1/2 at the GUT scale are excluded by gluino searches, we provide a series of benchmarks which show that while M1=M2≪M3 is in tension with 8 and 13 TeV LHC data, M1 |