Spatial integration during active tactile sensation drives orientation perception
Autor: | Brown, Jennifer, Oldenburg, Ian Antón, Telian, Gregory I, Griffin, Sandon, Voges, Mieke, Jain, Vedant, Adesnik, Hillel |
---|---|
Rok vydání: | 2021 |
Předmět: |
Male
orientation tuning Basic Behavioral and Social Science Mice cortical integration sensory cortex Orientation Behavioral and Social Science Animals Spatial Psychology optogenetics Neurology & Neurosurgery active sensation Neurosciences Somatosensory Cortex two photon imaging Inbred ICR sensory perception Touch Perception Vibrissae Space Perception Neurological barrel cortex Female Cognitive Sciences shape perception |
Zdroj: | Neuron, vol 109, iss 10 |
Popis: | Active haptic sensation is critical for object identification, but its neural circuit basis is poorly understood. We combined optogenetics, two-photon imaging, and high-speed behavioral tracking in mice solving a whisker-based object orientation discrimination task. We found that orientation discrimination required animals to summate input from multiple whiskers specifically along the whisker arc. Animals discriminated the orientation of the stimulus per se as their performance was invariant to the location of the presented stimulus. Populations of barrel cortex neurons summated across whiskers to encode each orientation. Finally, acute optogenetic inactivation of the barrel cortex and cell-type-specific optogenetic suppression of layer 4 excitatory neurons degraded performance, implying that infragranular layers alone are not sufficient to solve the task. These data suggest that spatial summation over an active haptic array generates representations of an object's orientation, which may facilitate encoding of complex three-dimensional objects during active exploration. |
Databáze: | OpenAIRE |
Externí odkaz: |