Atomic Layer Deposition onto Fibers
Autor: | Roy, Amit Kumar |
---|---|
Přispěvatelé: | Goedel, Werner Andreas, Hietschold, Michael, Technische Universität Chemnitz |
Jazyk: | angličtina |
Rok vydání: | 2011 |
Předmět: |
Atomlagenabscheidung
Kohlefaser Oxidationsbeständigkeit Aluminiumoxid Titanoxid Aluminiumphosphat Doppelschichten gepulste chemische Gasphasenabscheidung Oxid-Mikroröhren dünne Schichten ALD-Reaktor ALD Carbon Fiber Thin film oxidation barrier Titania Alumina Aluminum Phosphate Microtube ALD-reactor reinforcing fiber oxide coating Double Layer coatings thin layer coatings ddc:621.3 Atomlagenabscheidung Anorganische Beschichtung CVD-Verfahren Titandioxid Faser Kohlenstofffaser ddc:541 ddc:620 |
Popis: | The main goal of this dissertation was to show that the principle of atomic layer deposition (ALD) can be applied to “endless” fibers. A reactor of atomic layer deposition has been designed, especially for coating depositions onto meter long bundles of fibers. Aluminum oxide (alumina), titanium oxide (titania), double layers of alumina and titania, as well as aluminium phosphate have been deposited onto bundles of carbon fibers using the home-built reactor. Scanning electron microscopic (SEM) and transmission electron microscopic (TEM) images indicate that the coatings were uniform and conformal onto fiber surface. There was a good adhesion of the coatings to the fibers. Alumina has been deposited using two separate aluminum sources (aluminum trichloride and trimethylaluminum), and water as a source of oxygen. In case of alumina deposition using aluminum trichloride and water, initial deposition temperature was 500 °C. In these conditions, a part of the fiber bundle has been damaged. Thus, the deposition temperature was decreased to 300 °C and the fibers were unaffected. In addition, during this process hydrochloric acid is formed as a byproduct which is a corrosive substance and affects the reactor and there was a chloride impurity in the coatings. Thus, aluminum trichloride precursor was replaced by trimethylalumium. Alumina deposition onto carbon fibers using trimethylaluminum and water was carried out at a temperature of 77 °C. SEM images revealed that the fibers were unaffected and the coatings were uniform and conformal. Oxidation resistance of the carbon fibers was improved slightly after alumina deposition. Oxidation onset temperature of the uncoated fibers was about 630 °C. The resistance was linearly increased with the coating thickness (up to 660 °C) and getting saturated over a thickness of 120 nm. Titania coatings have been deposited using titanium tetrachloride and water. The physical appearances of the titania coatings were similar to the alumina coatings. The oxidation onset temperature of the titania coated carbon fibers was similar to the uncoated fibers but the rate of oxidation was decreased than the uncoated fibers. Two double layer coatings were deposited, alumina followed by titania (alumina/titania), and titania followed by alumina (titania/alumina). If the fibers were coated with the double layer of alumina/titania, they had almost same oxidation onset as alumina coated fibers but the rate of oxidation was decreased significantly compared to alumina coated fibers. This feature is independent of the thickness of the titania layers, at least in the regime investigated (50 nm alumina followed by 13 nm and 40 nm titania). On the other hand, the oxidation onset temperature of fibers coated with titania/alumina (20 nm titania /30 nm alumina) was approximately 750 °C. The fibers were burned completely when temperature was further increased to 900 °C and held another 60 minutes at 900 °C. This is significantly better than any other coating used in this dissertation. ALD of titania and alumina in principle was known beforehand, this dissertation here applies this knowledge for the first time to endless fibers. Furthermore, this dissertation shows for the first time that one can deposit aluminum phosphate via ALD (planar surface as well as fibers). Aluminum phosphate might be special interest in the fiber coating because it is a rather soft material and thus might be used to obtain a weak coupling between fiber and matrix in composites. Aluminum phosphate was deposited using trimethylaluminum and triethylphosphate as precursors. Energy dispersive X-ray spectroscopy and solid state nuclear magnetic resonance spectra confirmed that the coating comprises aluminum phosphate (orthophosphate as well as other stoichiometries). Scanning electron microscopic images revealed that coatings are uniform and conformal. In cases of alumina and titania, it was observed that the coatings were delaminated from the ends of cut fibers and thus formed of clear steps. On the other hand, for aluminum phosphate coating it was observed that the border between coating and underlying fiber often being smeared out and thus formed an irregular line. It seems in case aluminum phosphate cohesion is weaker than adhesion, thus it might be act a weak interface between fiber and matrix. Alumina, titania, and double layer microtubes have been obtained after selective removal of the underlying carbon fibers. The carbon fibers were selectively removed via thermal oxidation in air at temperatures exceeding 550 °C. SEM and TEM images indicate that the inner side of the tube wall has the same morphology like the fibers. In addition, it was observed that the individual microtubes were separated from their neighbors and they had almost uniform wall thicknesses. The longest tubes had a length of 30 cm.:Bibliographische Beschreibung und Referat 2 Abstract 4 List of abbreviations 10 1. General introduction and outline of this dissertation 12 1.1 References 20 2. Atomic layer deposition: Process and reactor 25 2.1 Introduction 25 2.2 Principle of atomic layer deposition 26 2.3 Materials and methods 29 2.3.1 Precursors 29 2.3.2 Precursors transportation 31 2.3.3 Carrier and purge gas 32 2.3.4 ALD reactors 32 2.4 Flow-Type ALD reactor for fiber coating 33 2.5 Conclusion 35 2.6 References 35 3. Single layer oxide coatings 38 3.1 State of the art 38 3.2 Alumina coating using non-flammable precursors 39 3.2.1 Introduction 39 3.2.Result and discussion 39 3.3 Alumina coating using organometallic precursor 46 3.2.1 Introduction 46 3.2.2 Results and discussion 46 3.4 Titania coating using titanium tetrachloride and water 59 3.4.1 Introduction 59 3.4.2 Results and discussion 59 3.5 Experimental Part 67 3.5.1 General experiments 67 3.5.2 Alumina coating using aluminum chloride and water 69 3.5.3 Alumina coating using trimethylalumium and water 69 3.5.4 Titania coating 72 3.6 Conclusions 72 3.7 References 74 4. Coating thickness and morphology 78 4.1 Introduction 78 4.2 Results and discussion 80 4.2.1 Purge time 15 s 81 4.2.2 Purge time 30 s 85 4.2.3 Purge time 45 s to 100 s 85 4.3 Experimental part 88 4.4 Conclusions 89 4.5 References 89 5. Alumina and titania double layer coatings 91 5.1 Introduction 91 5.2 Results and discussion 92 5.3 Experimental part 102 5.4 Conclusions 103 5.5 References 103 6. Atomic layer deposition of aluminum phosphate 105 6.1 Introduction 105 6.2 Results and discussion 106 6.3 Experimental part 113 6.4 Conclusions 114 6.5 References 115 7. Alumina microtubes 117 7.1 Introduction 117 7.2 Results and discussion 118 7.2.1 Fibers before coating deposition 118 7.2.2 Coatings on the carbon fibers 118 7.2.3 Microtubes 121 7.3 Experimental part 127 7.4 Conclusions 128 7.5 References 128 8. Conclusions 131 Acknowledgements 136 Curriculum Vitae 138 Selbständigkeitserklärung 142 Das Hauptziel dieser Dissertation bestand darin nachzuweisen, dass die Atomlagenabscheidung (engl. atomic layer deposition (ALD)) auf „endlose“ Fasern angewendet werden kann. Es wurde ein Reaktor zur Atomlagenabscheidung gestaltet, der speziell für die Beschichtung meterlanger Faserbündel geeignet ist. Aluminiumoxid, Titanoxid, Doppelschichten aus Aluminiumoxid und Titanoxid sowie Aluminiumphosphat wurden mit Hilfe des selbstgebauten Reaktors auf Kohlefaserbündel abgeschieden. Rasterelektronenmikroskopische (REM) und transmissionselektronenmikroskopische (TEM) Aufnahmen zeigten, dass die Beschichtung auf den Fasern einheitlich und oberflächentreu war. Des Weiteren wurde eine gute Adhäsion zwischen Beschichtung und Fasern beobachtet. Das Prinzip der Beschichtung mit Titanoxid und Aluminiumoxid mit Hilfe der ALD war bereits vorher bekannt und im Rahmen dieser Dissertation jedoch erstmals auf "endlose" Fasern angewendet. Des Weiteren wird in dieser Dissertation erstmals gezeigt, dass es möglich ist, Aluminiumphosphat mittels ALD abzuscheiden (sowohl auf planaren Oberflächen als auch auf Fasern). Aluminiumphosphat könnte von besonderem Interesse in der Faserbeschichtung sein, da es ein relativ weiches Material ist und könnte daher als eine Art „schwacher“ Verbindung zwischen Faser und Matrix in Kompositen dienen. Die Oxidationsbeständigkeit von beschichten Kohlefasern wurde im Vergleich zu unbeschichteten Fasern bis zu einem gewissen Grad erhöht. Monoschichten von Aluminiumoxid und Titanoxid waren dafür wenig effektiv. Aluminiumphosphatbeschichtete Fasern waren deutlich besser geeignet als die beiden anderen. Eine Doppelschicht aus Titanoxid gefolgt von Aluminiumoxid verbesserte die Oxidationsbeständigkeit nochmals deutlich gegenüber allen anderen Beschichtungen, die in dieser Dissertation verwendet wurden. Mikroröhren aus Aluminiumoxid, Titanoxid und Doppelschichten wurden durch die selektive Entfernung der zugrunde liegenden Kohlefasern erhalten. Einzelne Mikroröhren waren von benachbarten Röhren getrennt und sie weisen eine nahezu einheitliche Wanddicke auf.:Bibliographische Beschreibung und Referat 2 Abstract 4 List of abbreviations 10 1. General introduction and outline of this dissertation 12 1.1 References 20 2. Atomic layer deposition: Process and reactor 25 2.1 Introduction 25 2.2 Principle of atomic layer deposition 26 2.3 Materials and methods 29 2.3.1 Precursors 29 2.3.2 Precursors transportation 31 2.3.3 Carrier and purge gas 32 2.3.4 ALD reactors 32 2.4 Flow-Type ALD reactor for fiber coating 33 2.5 Conclusion 35 2.6 References 35 3. Single layer oxide coatings 38 3.1 State of the art 38 3.2 Alumina coating using non-flammable precursors 39 3.2.1 Introduction 39 3.2.Result and discussion 39 3.3 Alumina coating using organometallic precursor 46 3.2.1 Introduction 46 3.2.2 Results and discussion 46 3.4 Titania coating using titanium tetrachloride and water 59 3.4.1 Introduction 59 3.4.2 Results and discussion 59 3.5 Experimental Part 67 3.5.1 General experiments 67 3.5.2 Alumina coating using aluminum chloride and water 69 3.5.3 Alumina coating using trimethylalumium and water 69 3.5.4 Titania coating 72 3.6 Conclusions 72 3.7 References 74 4. Coating thickness and morphology 78 4.1 Introduction 78 4.2 Results and discussion 80 4.2.1 Purge time 15 s 81 4.2.2 Purge time 30 s 85 4.2.3 Purge time 45 s to 100 s 85 4.3 Experimental part 88 4.4 Conclusions 89 4.5 References 89 5. Alumina and titania double layer coatings 91 5.1 Introduction 91 5.2 Results and discussion 92 5.3 Experimental part 102 5.4 Conclusions 103 5.5 References 103 6. Atomic layer deposition of aluminum phosphate 105 6.1 Introduction 105 6.2 Results and discussion 106 6.3 Experimental part 113 6.4 Conclusions 114 6.5 References 115 7. Alumina microtubes 117 7.1 Introduction 117 7.2 Results and discussion 118 7.2.1 Fibers before coating deposition 118 7.2.2 Coatings on the carbon fibers 118 7.2.3 Microtubes 121 7.3 Experimental part 127 7.4 Conclusions 128 7.5 References 128 8. Conclusions 131 Acknowledgements 136 Curriculum Vitae 138 Selbständigkeitserklärung 142 |
Databáze: | OpenAIRE |
Externí odkaz: |