Development, characterization and evaluation of a catalyst in the reforming of biogas for the production of green hydrogen

Autor: Phan, Thanh Son
Přispěvatelé: Centre de recherche d'Albi en génie des procédés des solides divisés, de l'énergie et de l'environnement (RAPSODEE), Centre National de la Recherche Scientifique (CNRS)-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Ecole des Mines d'Albi-Carmaux, Doan Pham Minh, Ange Nzihou
Jazyk: francouzština
Rok vydání: 2020
Předmět:
Zdroj: Génie des procédés. Ecole des Mines d'Albi-Carmaux, 2020. Français. ⟨NNT : 2020EMAC0007⟩
Popis: Biogas production worldwide is increasing steadily. The combustion to generate heat and electricity, and the biomethane production for injection into the city gas grid are currently the two major industrial applications of biogas. Current research on biogas valorization targets the production of high-value products such as hydrogen for transportation. This is the main objective of the VABHYOGAZ3 project funded by ADEME, which aims at deploying the production of H2 from biogas in the Tarn department, France. Biogas steam reforming, adopted by the industrial partners of the VABHYOGAZ3 project, is a commonly used process in the industry to reform natural gas, but it is a highly energy-consuming process. This PhD thesis aims to develop efficient catalysts for the Dry Reforming of Methane (DRM: conversion of CH4 and CO2 into syngas - mixture of CO and H2) and for the Tri-Reforming of Biogas (Tri-RB: conversion of CH4, CO2, H2O and O2 into syngas). The ultimate goal was to optimize the energy efficiency of the overall process of H2 production through the reforming of biogas, which is essential to make the process economically viable. In fact, DRM and Tri-RB catalysts usually have the problem of catalytic deactivation due to coke deposition and thermal sintering at high temperature (> 700 °C). Obtaining an efficient catalyst under severe conditions of DRM and Tri-RM is crucial for the deployment of these processes at large industrial scale. First, a study on the thermodynamics of the overall processes for H2 production via the reforming of biogas was carried out. Mass and energy balances of these processes were also obtained by ASPEN simulation. Then, various nickel-based catalysts supported on hydroxyapatite (HAP) and on hydroxyapatite substituted with Mg (Mg_HAP) were prepared and characterized. HAP-based supports are considered to be new catalytic materials which have suitable properties for heterogeneous catalysis, in particular for high temperature processes such as DRM and Tri-RM. In this study, HAP supports having the Ca/P molar ratio of 1.55, 1.67 and 1.75, and Mg_HAP (substitution of 2.2, 5.8 and 8.5 % of Ca with Mg) have been synthesized. These supports were doped with 5 wt.% of Ni by incipient wetness impregnation method. These catalysts were evaluated for both DRB and Tri-RB reactions in a fixed bed reactor. A parametric study on the influence of operating conditions including temperature, total pressure, biogas feeding rate, and molar ratio of steam to methane (S/C) and oxygen to methane (O/C), has been performed. The objective was to compare and identify the best catalysts and the best operating conditions. Mass balances have been established experimentally. Catalytic deactivation has been discussed and evidenced. Finally, the stability of the best catalysts was studied for a long reaction time of 150-300 h, and catalyst regeneration was also performed. This work shows that Ni-based catalysts supported on HAP or on Mg_HAP are competitive to the best catalysts identified in the literature. This work also confirms the interest of the use of new HAP-based supports in heterogeneous catalysis and particularly in high temperature processes.; La production du biogaz ne cesse d’augmenter dans le monde entier. La combustion pour produire de la chaleur et de l’électricité, de même que la production du biométhane pour l’injection au réseau de gaz de ville sont les deux applications industrielles majeures du biogaz. La recherche actuelle sur la valorisation du biogaz se focalise sur la production des produits à haute valeur ajoutée comme l’hydrogène pour la mobilité. C’est l’objectif principal du projet VABHYOGAZ3, financé par ADEME, qui vise à déployer la production d’H2 à partir du biogaz dans le Tarn. Le procédé de reformage du biogaz adopté par les partenaires industriels du projet VABHYOGAZ3 est le vaporeformage, qui est couramment utilisé dans l’industrie pour reformer le gaz naturel, et qui est un procédé fortement énergivore. Cette thèse a pour objectif de développer des catalyseurs performants pour le reformage à sec du méthane (RSB : conversion de CH4 et CO2 en syngas – mélange de CO et H2) et pour le tri-reformage du méthane (Tri-RB : conversion de CH4, CO2, H2O et O2 en syngas). Le but ultime est d’optimiser l’efficacité énergétique du procédé global de la production d’H2 via le reformage du biogaz, qui est indispensable pour rendre ce procédé économiquement viable. En fait, les catalyseurs en RSB et Tri-RB ont souvent le problème de désactivation catalytique en raison du dépôt de coke et du frittage thermique à haute température (> 700°C). L’obtention d’un catalyseur performant sous les conditions sévères de RSB et Tri-RB est crucial pour le déploiement de ces procédés à large échelle industrielle. Dans un premier temps, une étude sur la thermodynamique des procédés globaux de la production d’H2 via le reformage du biogaz a été effectuée. Les bilans de matière et d’énergie de ces procédés ont aussi été réalisés par la simulation sur Aspen Plus. Ensuite, différents catalyseurs à base de nickel supporté sur les supports d’hydroxyapatite (HAP) et d’hydroxyapatite substituée au Mg (Mg_HAP) ont été préparés et caractérisés. Les supports à base d’HAP sont considérés comme des nouveaux matériaux catalytiques qui ont des propriétés appropriées en catalyse hétérogène, en particulier pour des procédés à haute température tels que RSB et Tri-RB. Dans cette étude, les supports HAP ayant les rapports molaires de Ca/P de 1,55, 1,67 et 1,75, et Mg_HAP (substitution de 2,2, 5,8 et 8,5% de Ca par Mg) ont été synthétisés. Ces supports ont été dopés avec 5% en masse de Ni par imprégnation à sec. Ces catalyseurs ont été évalués dans les deux réactions de RSB et Tri-RB dans un réacteur à lit fixe. Une étude paramétrique sur l’influence des conditions opératoires incluant la température, la pression totale, le débit d’alimentation du biogaz, et le rapport molaire de la vapeur d’eau sur méthane (S/C) et d’oxygène sur méthane (O/C), a été effectuée. L’objectif a été de comparer et d’identifier les meilleurs catalyseurs et les meilleurs conditions opératoires. Les bilans de matières ont été établis. Les raisons de la désactivation catalytique ont été mises en évidence. Enfin, la stabilité catalytique des meilleurs catalyseurs a été étudiée pendant 150-300 h de réaction. Les résultats obtenus montrent que les catalyseurs à base de Ni supporté sur HAP ou Mg_HAP sont compétitifs par rapport aux meilleurs catalyseurs identifiés dans la littérature. Ce travail confirme également l’intérêt de l’utilisation des nouveaux supports à base d’HAP dans la catalyse hétérogène et en particulier dans les procédés à haute température.
Databáze: OpenAIRE