Study on microstructural and crystallogarphic characteristics of phase transformation induced by ECP in annealed Cu-40%Zn alloy

Autor: Liu, Meishua
Přispěvatelé: Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Université de Lorraine, Northeastern University (Shenyang), Yudong Zhang, Benoît Beausir, Xiang Zhao, Xinli Wang
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Materials Science [cond-mat.mtrl-sci]. Université de Lorraine; Northeastern University (Shenyang), 2019. English. ⟨NNT : 2019LORR0210⟩
Popis: Texte intégral accessible uniquement aux membres de l'Université de Lorraine jusqu'au 1er mars 2020.; A thorough investigation has been conducted on the microstructural and crystallographic features of Electric Current Pulse (ECP) treated Cu-40%Zn alloys. The phase transformation orientation relationship (OR) and its correlation with crystal defects have been studied and the formation mechanisms of ECP induced crystal defects in the parent phase and the sub-structures in the β precipitates were also analyzed. The α to β heating phase transformation can be induced by ECP treatment with the formation of fine β precipitates that can be remained to the room temperature. With the increase of the electric current density, the amount of precipitates is increased and the formation sites increase from α grain boundaries to grain interiors. The β precipitates follow different ORs depending on the formation site. The grain boundary β phase obeys the Kurdjumov-Sachs (K-S) OR; whereas the intragranular β respects the Nishiyama-Wasserman (N-W) OR. In the former sites, the {111}α /α dislocations are observed, whereas in the latter, the {111}α/α stacking faults are found. Transformation strain analyses revealed that under the K-S OR the maximum lattice deformation required is a shear on the {111}α /α slip system, whereas under the N-W OR the maximum deformation is a shear on the {111}α /α system. Thus the existing {111}α /α dislocations along the α grain boundaries provide pre-strain required by the transformation via the K-S path, whereas the {111}α /α stacking faultsboarded by {111}α /α partial dislocations offer pre-strain facilitating the transformation via the N-W path. Different types of crystal defects are formed in the α matrix by the ECP treatments depending on the current density. At low density, large amount of {111}α /α stacking faults and then nano twins are produced in the α matrix. At high density, dislocation nets are formed near the β precipitates that are composed of edge typed {111}α /< 11̅0 >α perfect dislocations and the Frank typed dislocations. The volume misfit between the α and the β phase analyzed with transformation deformation reveals that the transformation from α to β requires an expansion along [11̅0]α direction and a contraction along [111]α direction. The former results in the appearance of the {111}α /α edge typed dislocation arrays in front of the {31̅1}α broad faces and the latter induces the formation of the Frank typed dislocations in front of the {121}α broad faces. Thus, dislocation nets formed along the edges of the broad faces of the β precipitates where the two kinds of dislocations meet. Furthermore, the β precipitates contain two kinds of nano-sized and diffuse atomic clusters with the  structure obeying the Burgers OR and with the ω structure obeying the Blackburn OR with the β matrix. They were each formed through a two-stepped atomic displacement. For the  structure, the first step is the atomic shuffle of each second {110}β plane in the βdirection and the second is a structure change mainly by a shear on the {11̅2}β /β. For the ω structure, the first is an atomic shuffle on each second and third {112̅}β plane in the ±[111]β directions and then normal strains in three mutually perpendicular directions (β, β and β). The concomitant appearance of the two structures lies in the fact that the volume increase accompanying the  formation can be canceled by the volume decrease accompanying the ω distortion, which minimizing the transformation strain energy. The results of this work provide fundamental information on the Cu-40%Zn alloys for interpreting the impact of the crystal defects on the solid phase transformation ORs, on the formation of various types of crystal defects induced by the ultra-rapid phase transformation and on the formation mechanisms of sub structures in the product phase.; Ce travail porte sur les caractéristiques microstructurales et cristallographiques des alliages Cu-40%Zn traités par Electric Current Pulse (ECP). La relation d'orientation (RO) de transformation de phase et sa corrélation avec les défauts cristallins ont été étudiés. Les mécanismes de formation des défauts cristallins dans la phase mère et des sous-structures dans les précipités β induit par L'ECP ont également été étudiés. La transformation de la phase α en β peut être induite par un traitement ECP avec formation de précipités fins β pouvant persister à température ambiante. Avec l'augmentation de la densité de courant électrique, la quantité de précipités et les sites de formation augmentent des joints de grains α à l'intérieur des grains. Les précipités β suivent différentes RO en fonction du site de formation. Les joints de grains β sont en RO Kurdjumov-Sachs (KS); tandis que les β intragranulaires sont en Nishiyama-Wasserman (NW). Dans les premiers sites, on observe des dislocations {111}α/α, alors que dans les seconds, les fautes d’empilements {111}α/α sont présentes. Les analyses de déformation de transformation ont révélé que, en RO KS, la déformation maximale du réseau requise est un cisaillement sur le système {111}α/α, tandis qu'en NW, la déformation maximale correspond à un cisaillement sur le système {111}α/α. Ainsi, les dislocations {111}α/α existants le long des joints de grains α fournissent la précontrainte requise par la transformation KS, alors que les fautes d'empilement {111}α/α entourées par les dislocations partielles {111}α/α offrent une précontrainte facilitant la transformation NW. Différents types de défauts cristallins sont formés dans la matrice α par les traitements ECP en fonction de la densité de courant. À faible densité, une grande quantité de fautes d'empilement {111}α/α, puis des nano-mâcles sont produites dans la matrice α. A haute densité, des réseaux de dislocations sont formés à proximité des précipités β composés de dislocations coins parfaites {111}α/α et des dislocations de Frank. La différence de volume entre le phases α et β analysée avec la déformation de transformation révèle que cette dernière nécessite une dilatation dans la direction [11̅0]α et une contraction dans la direction [111]α. La première entraîne l’apparition de dislocations coins {111}α/α devant les larges faces {31̅1}α et la dernière induit la formation des dislocations de Frank devant les larges faces {121}α. Ainsi, des réseaux de dislocations se forment le long des bords des grandes faces des précipités β où les deux types de dislocations se rencontrent. De plus, les précipités β contiennent deux types d’agrégats atomiques de taille nanométrique de structure n en RO Burgers et de structure ω en RO Blackburn avec la matrice β. Ils ont été formés par un déplacement atomique en deux étapes. Pour la structure n, la première étape est le brassage atomique de chaque second plan {110}β dans la direction β et la seconde consiste en un changement de structure principalement par un cisaillement selon {11̅2}β /β. Pour la structure ω, le premier est un mélange atomique sur chaque deuxième et troisième plan {112̅}β dans les directions ±[111]β, puis des déformations normales dans trois directions perpendiculaires (β, β et β). L’apparence concomitante des deux structures réside dans le fait que l’augmentation de volume accompagnant la formation de n peut être annulée par la diminution de volume accompagnant la distorsion ω, ce qui minimise l’énergie de déformation de transformation. Ce travail fournit des informations fondamentales sur les alliages Cu-40%Zn pour interpréter l’impact des défauts sur les relations d'orientation de transformations en phase solide, sur la formation de divers types de défauts induits par la transformation de phase ultra-rapide ainsi que sur les mécanismes de formation des sous-structures des phases produites.
Databáze: OpenAIRE