Popis: |
Driven with the objective of rendering robots as socio-communicative, there has been a heightened interest towards researching techniques to endow robots with social skills and ``commonsense'' to render them acceptable. This social intelligence or ``commonsense'' of the robot is what eventually determines its social acceptability in the long run.Commonsense, however, is not that common. Robots can, thus, only learn to be acceptable with experience. However, teaching a humanoid the subtleties of a social interaction is not evident. Even a standard dialogue exchange integrates the widest possible panel of signs which intervene in the communication and are difficult to codify (synchronization between the expression of the body, the face, the tone of the voice, etc.). In such a scenario, learning the behavioral model of the robot is a promising approach. This learning can be performed with the help of AI techniques. This study tries to solve the problem of learning robot behavioral models in the Automated Planning and Scheduling (APS) paradigm of AI. In the domain of Automated Planning and Scheduling (APS), intelligent agents by virtue require an action model (blueprints of actions whose interleaved executions effectuates transitions of the system state) in order to plan and solve real world problems. During the course of this thesis, we introduce two new learning systems which facilitate the learning of action models, and extend the scope of these new systems to learn robot behavioral models. These techniques can be classified into the categories of non-optimal and optimal. Non-optimal techniques are more classical in the domain, have been worked upon for years, and are symbolic in nature. However, they have their share of quirks, resulting in a less-than-desired learning rate. The optimal techniques are pivoted on the recent advances in deep learning, in particular the Long Short Term Memory (LSTM) family of recurrent neural networks. These techniques are more cutting edge by virtue, and produce higher learning rates as well. This study brings into the limelight these two aforementioned techniques which are tested on AI benchmarks to evaluate their prowess. They are then applied to HRI traces to estimate the quality of the learnt robot behavioral model. This is in the interest of a long term objective to introduce behavioral autonomy in robots, such that they can communicate autonomously with humans without the need of ``wizard'' intervention.; Conduite dans le but de rendre les robots comme socio-communicatifs, les chercheurs ont cherché à mettre au point des robots dotés de compétences sociales et de «bon sens» pour les rendre acceptables. Cette intelligence sociale ou «sens commun» du robot est ce qui finit par déterminer son acceptabilité sociale à long terme.Cependant, ce n'est pas commun. Les robots peuvent donc seulement apprendre à être acceptables avec l'expérience. Cependant, en enseignant à un humanoïde, les subtilités d'une interaction sociale ne sont pas évidentes. Même un échange de dialogue standard intègre le panel le plus large possible de signes qui interviennent dans la communication et sont difficiles à codifier (synchronisation entre l'expression du corps, le visage, le ton de la voix, etc.). Dans un tel scénario, l'apprentissage du modèle comportemental du robot est une approche prometteuse. Cet apprentissage peut être réalisé avec l'aide de techniques d'IA. Cette étude tente de résoudre le problème de l'apprentissage des modèles comportementaux du robot dans le paradigme automatisé de planification et d'ordonnancement (APS) de l'IA. Dans le domaine de la planification automatisée et de l'ordonnancement (APS), les agents intelligents nécessitent un modèle d'action (plans d'actions dont les exécutions entrelacées effectuent des transitions de l'état système) afin de planifier et résoudre des problèmes réels. Au cours de cette thèse, nous présentons deux nouveaux systèmes d'apprentissage qui facilitent l'apprentissage des modèles d'action et élargissent la portée de ces nouveaux systèmes pour apprendre les modèles de comportement du robot. Ces techniques peuvent être classées dans les catégories non optimale et optimale. Les techniques non optimales sont plus classiques dans le domaine, ont été traitées depuis des années et sont de nature symbolique. Cependant, ils ont leur part de quirks, ce qui entraîne un taux d'apprentissage moins élevé que souhaité. Les techniques optimales sont basées sur les progrès récents dans l'apprentissage en profondeur, en particulier la famille à long terme (LSTM) de réseaux récurrents récurrents. Ces techniques sont de plus en plus séduisantes par la vertu et produisent également des taux d'apprentissage plus élevés. Cette étude met en vedette ces deux techniques susmentionnées qui sont testées sur des repères d'IA pour évaluer leurs prouesses. Ils sont ensuite appliqués aux traces HRI pour estimer la qualité du modèle de comportement du robot savant. Ceci est dans l'intérêt d'un objectif à long terme d'introduire l'autonomie comportementale dans les robots, afin qu'ils puissent communiquer de manière autonome avec les humains sans avoir besoin d'une intervention de «magicien». |