Surface functionalization of plasmonic III-V semiconductors for surface-enhanced vibrational spectroscopy
Autor: | Bomers, Mario |
---|---|
Přispěvatelé: | Institut d’Electronique et des Systèmes (IES), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Montpellier, Thierry Taliercio, Laurent Cerutti |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Gallium oxide
Plasmonique Surface-Enhanced vibrational spectroscopy Spectroscopie vibrationnelle exaltée Fonctionnalisation de surface Oxyde de gallium Surface functionalization Microfluidics Plasmonics Semi-Conducteur III-V III-V semiconductor Micro-Fluidique [SPI.TRON]Engineering Sciences [physics]/Electronics |
Zdroj: | Electronics. Université Montpellier, 2018. English. ⟨NNT : 2018MONTS013⟩ |
Popis: | This thesis deals with the surface functionalization of nanostructured plasmonic III-V semiconductors for surface-enhanced vibrational spectroscopy relevant to identify minute amounts of analyte molecules.The first chapter outlines the theoretical foundations of surface-enhanced vibrational spectroscopy based on plasmonics. Comparing the plasmonic properties of the degenerate semiconductor InAs(Sb):Si and of metals, here gold and gallium, it is found that the degenerate semiconductor is especially suited for surface-enhanced infrared (SEIRA) spectroscopy and that gallium with its plasmonic potential in the UV-VIS range is apt for surface-enhanced Raman spectroscopy (SERS). Both alternative plasmonic materials theoretically outperform gold in their respective spectral ranges. Nevertheless, gold and its chemical inertness remain interesting for enabling plasmonic enhanced vibrational spectroscopy in different chemical environments. The influence of aqueous environments on the material properties of III-V semiconductors is addressed in the second and in the third chapter. It is found that InAs(Sb):Si is chemical stable in water, but GaSb is not. A GaSb/InAsSb:Si compound layer structure was used to demonstrate that the depletion of antimony and the incorporation of oxygen at the GaSb-water interface transform 50 nm of crystalline GaSb to a gallium oxide in less than 14 hours. The gallium oxide has a mid-IR refractive index in the order of n=1.6 and thus less than half of the value of the mid-IR refractive index of GaSb. This change in refractive index upon oxidation can be exploited to blue-shift the localized plasmonic resonance of InAsSb:Si gratings on GaSb-substrates in the range from 5 µm to 20 µm by pedestal formation.In Chapter 4, the controlled chemical bonding of organic molecules to the approximately 3 nm thin native oxide layer of III-V semiconductor surfaces by phosphonic acid chemistry is presented. This paves the way for plasmonic enhanced all-semiconductor mid-IR biophotonic applications. In chapter 5, two different, but equally successful strategies to combine III-V based plasmonic resonators with microfluidic circuits are described. These results demonstrate that lab-on-the-chip applications based on III-V semiconductors are possible. Finally, the possibility to integrate plasmonic Gallium nanoparticles onto the III-V material platform for a potential combination of SEIRA and SERS applications is presented in chapter 6.; Cette thèse traite de la fonctionnalisation de surface des résonateurs plasmonique à base de semi-conducteur III-V en utilisant de l’acide phosphonique pour la spectroscopie vibrationnelle exaltée permettant d'identifier des quantités infimes de molécules. Le premier chapitre décrit les fondements théoriques de la spectroscopie vibrationnelle exaltée. En comparant les propriétés plasmoniques du semi-conducteur dégénéré InAs(Sb):Si et des métaux, ici l’or et le gallium, on trouve que l’InAs(Sb):Si est particulièrement adapté à la spectroscopie infrarouge exaltée (SEIRA) et que le gallium est adapté à la spectroscopie Raman exaltée (SERS). Les deux matériaux plasmoniques alternatifs surpassent théoriquement l'or dans leurs gammes spectrales respectives. Néanmoins, l'or et son inertie chimique restent intéressants pour permettre la spectroscopie vibrationnelle exaltée dans différents environnements chimiques.Dans le deuxième chapitre on démontre que l’InAs(Sb):Si est chimiquement stable dans l'eau, contrairement au GaSb. Une structure en couches composites de GaSb/InAsSb:Si a été utilisée pour montrer que la déplétion de l'antimoine et l'incorporation d'oxygène à l'interface GaSb-eau transforment, en un peu moins de 14 h, 50 nm de GaSb cristallin en un oxyde de gallium. Cet oxyde de gallium a un indice de réfraction moyen-IR de l'ordre de n=1,6 ce qui est environ la moitié de la valeur de l'indice de réfraction du GaSb dans le moyen-IR.Dans le troisième chapitre, on démontre que cette modification de l'indice de réfraction lors de l'oxydation peut être exploitée pour décaler la résonance plasmonique localisée des réseaux InAsSb:Si sur des substrats GaSb dans la plage de 5 µm à 20 µm par formation d’un piédestal.Dans le chapitre 4 est présenté le contrôle de la liaison chimique des molécules organiques avec la fine couche d'oxyde natif à la surface du semi-conducteur III-V. L’attachement de ces molécules sur l’oxyde de surface ouvre la voie à des applications bio-photoniques utilisant des semi-conducteurs améliorés par des résonateurs plasmoniques.Dans le chapitre 5 est décrit deux stratégies différentes pour combiner des résonateurs plasmoniques à base de III-V avec des circuits micro-fluidiques. Ces résultats démontrent que des applications lab-on-the-chip basées sur des semi-conducteurs III-V sont possibles.Enfin, la possibilité d'intégrer des nanoparticules de Gallium plasmoniques sur des semi-conducteurs III-V pour combiner les méthodes SEIRA et SERS est présentée au chapitre 6. |
Databáze: | OpenAIRE |
Externí odkaz: |