On-line Handwriting Recognition using Support Vector Machines and Hidden Markov Models approaches
Autor: | Ahmad, Abdul Rahim |
---|---|
Přispěvatelé: | Institut de Recherche en Communications et en Cybernétique de Nantes (IRCCyN), Mines Nantes (Mines Nantes)-École Centrale de Nantes (ECN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-PRES Université Nantes Angers Le Mans (UNAM)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes, Christian VIARD-GAUDI N(christian.viard-gaudin@univ-nantes.fr) |
Jazyk: | angličtina |
Rok vydání: | 2008 |
Předmět: |
dynamic programming
hidden markov model systèmes à vastes marges neural network classifieur structural risk minimization reconnaissance écriture manuscrite empirical risk minimization (ERM) programmation dynamique handwriting recognition support vector machine [INFO.INFO-HC]Computer Science [cs]/Human-Computer Interaction [cs.HC] modèles de Markov caches on-line réseau de neurones |
Zdroj: | Human-Computer Interaction [cs.HC]. Université de Nantes, 2008. English |
Popis: | Handwriting recognition is one of the leading applications of pattern recognition and machine learning. Despite having some limitations, handwriting recognition systems have been used as an input method of many electronic devices and helps in the automation of many manual tasks requiring processing of handwriting images. In general, a handwriting recognition system comprises three functional components; preprocessing, recognition and post-processing. There have been improvements made within each component in the system. However, to further open the avenues of expanding its applications, specific improvements need to be made in the recognition capability of the system. Hidden Markov Model (HMM) has been the dominant methods of recognition in handwriting recognition in offline and online systems. However, the use of Gaussian observation densities in HMM and representational model for word modeling often does not lead to good classification. Hybrid of Neural Network (NN) and HMM later improves word recognition by taking advantage of NN discriminative property and HMM representational capability. However, the use of NN does not optimize recognition capability as the use of Empirical Risk minimization (ERM) principle in its training leads to poor generalization. In this thesis, we focus on improving the recognition capability of a cursive online handwritten word recognition system by using an emerging method in machine learning, the support vector machine (SVM). We first evaluated SVM in isolated character recognition environment using IRONOFF and UNIPEN character databases. SVM, by its use of principle of structural risk minimization (SRM) have allowed simultaneous optimization of representational and discriminative capability of the character recognizer. We finally demonstrate the various practical issues in using SVM within a hybrid setting with HMM. In addition, we tested the hybrid system on the IRONOFF word database and obtained favourable results.; Nos travaux concernent la reconnaissance de l'écriture manuscrite qui est l'un des domaines de prédilection pour la reconnaissance des formes et les algorithmes d'apprentissage. Dans le domaine de l'écriture en-ligne, les applications concernent tous les dispositifs de saisie permettant à un usager de communiquer de façon transparente avec les systèmes d'information. Dans ce cadre, nos travaux apportent une contribution pour proposer une nouvelle architecture de reconnaissance de mots manuscrits sans contrainte de style. Celle-ci se situe dans la famille des approches hybrides locale/globale où le paradigme de la segmentation/reconnaissance va se trouver résolu par la complémentarité d'un système de reconnaissance de type discriminant agissant au niveau caractère et d'un système par approche modèle pour superviser le niveau global. Nos choix se sont portés sur des Séparateurs à Vastes Marges (SVM) pour le classifieur de caractères et sur des algorithmes de programmation dynamique, issus d'une modélisation par Modèles de Markov Cachés (HMM). Cette combinaison SVM/HMM est unique dans le domaine de la reconnaissance de l'écriture manuscrite. Des expérimentations ont été menées, d'abord dans un cadre de reconnaissance de caractères isolés puis sur la base IRONOFF de mots cursifs. Elles ont montré la supériorité des approches SVM par rapport aux solutions à bases de réseaux de neurones à convolutions (Time Delay Neural Network) que nous avions développées précédemment, et leur bon comportement en situation de reconnaissance de mots. |
Databáze: | OpenAIRE |
Externí odkaz: |