Y. Tonegawa - Analysis on the mean curvature flow and the reaction-diffusion approximation (Part 2)
Autor: | Tonegawa, Yoshihiro, Bastien, Fanny, Magnien, Jérémy |
---|---|
Přispěvatelé: | Bastien, Fanny |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: | |
Popis: | The course covers two separate but closely related topics. The first topic is the mean curvature flow in the framework of GMT due to Brakke. It is a flow of varifold moving by the generalized mean curvature. Starting from a quick review on the necessary tools and facts from GMT and the definition of the Brakke mean curvature flow, I will give an overview on the proof of the local regularity theorem. The second topic is the reaction-diffusion approximation of phase boundaries with key words such as the Modica-Mortola functional and the Allen-Cahn equation. Their singular perturbation problems are related to objects such as minimal surfaces and mean curvature flows in the framework of GMT. |
Databáze: | OpenAIRE |
Externí odkaz: |