Mixed precision iterative refinement for low-rank matrix and tensor approximations

Autor: Baboulin, Marc, Kaya, Oguz, Mary, Théo, Robeyns, Matthieu
Přispěvatelé: Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Performance et Qualité des Algorithmes Numériques (PEQUAN), LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DIM RFSI RC-TENSOR No 2021-05
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Popis: We present a new mixed precision algorithm to compute low-rank matrix and tensor approximations, a fundamental task in numerous applications in scientific computing and data analysis. Our algorithm is reminiscent of the iterative refinement framework for linear systems: we first compute a low-rank approximation in low precision and then refine its accuracy by iteratively updating it. We carry out an error analysis of our algorithm which proves that we can reach a high accuracy while performing most of the operations in low precision. We measure the computational cost of the algorithm, which depends on the numerical rank of the input (matrix or tensor) as well as the speed ratio between low and high precision arithmetic. We identify two situations where our method has a strong potential : when the hardware provides fast low precision matrix multiplyaccumulate units, and when the numerical rank of the input is small at low accuracy levels. We confirm experimentally the potential of our algorithm for computing various low-rank matrix and tensor decompositions such as SVD, QR, Tucker, hierarchical Tucker, and tensor-train.
Databáze: OpenAIRE