A First Corpus of AZee Discourse Expressions

Autor: Challant, Camille, Filhol, Michael
Přispěvatelé: Information, Langue Ecrite et Signée (ILES), Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Sciences et Technologies des Langues (STL), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Language Resources and Evaluation Conference
Language Resources and Evaluation Conference, Jun 2022, Marseille, France
Popis: International audience; This paper presents a corpus of AZee discourse expressions, i.e. expressions which formally describe Sign Language utterances of any length using the AZee approach and language. The construction of this corpus had two main goals: a first reference corpus for AZee, and a test of its coverage on a significant sample of real-life utterances. We worked on productions from an existing corpus, namely the 40 brèves, containing an hour of French Sign Language. We wrote the corresponding AZee discourse expressions for the entire video content, i.e. expressions capturing the forms produced by the signers and their associated meaning by combining known production rules, a basic building block for these expressions. These are made available as a version 2 extension of the 40 brèves. We explain the way in which these expressions can be built, present the resulting corpus and set of production rules used, and perform first measurements on it. We also propose an evaluation of our corpus: for one hour of discourse, AZee allows to describe 94% of it, while ongoing studies are increasing this coverage. This corpus offers a lot of future prospects, for instance concerning synthesis with virtual signers, machine translation or formal grammars for Sign Language.
Databáze: OpenAIRE