Clausal Presentation of Theories in Deduction Modulo

Autor: Gao, Jianhua
Přispěvatelé: Types, Logic and computing (TYPICAL), Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), State Key Laboratory of Computer Science [Beijing] (LCS), Institute of Software Chinese Academy of Sciences [Beijing], Germain Faure, Stéphane Lengrand, Assia Mahboubi
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Zdroj: PSATTT'11: International Workshop on Proof-Search in Axiomatic Theories and Type Theories
PSATTT'11: International Workshop on Proof-Search in Axiomatic Theories and Type Theories, Germain Faure, Stéphane Lengrand, Assia Mahboubi, Aug 2011, Wroclaw, Poland
Popis: International audience; Resolution modulo is an extension of first-order resolution where axioms are replaced by rewrite rules, used to rewrite, or more generally narrow, clauses during the search. In the first version of this method, clauses were rewritten to arbitrary propositions, that needed to be dynamically transformed into clauses. This unpleasant feature can be eliminated when the rewrite system is clausal, i.e. when it transforms clauses to clauses. We show in this paper that how to transform any rewrite system into a clausal one, preserving the existence of cut free proof of any sequent.
Databáze: OpenAIRE