A refined extreme quantiles estimator for Weibull tail-distributions

Autor: El Methni, Jonathan, Girard, Stéphane
Přispěvatelé: Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145), Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Modèles statistiques bayésiens et des valeurs extrêmes pour données structurées et de grande dimension (STATIFY), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Chaire Stress Test - BNP Paribas/Ecole polytechnique/Fondation de l'X
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Popis: We address the estimation of extreme quantiles of Weibull tail-distributions. Since such quantiles are asymptotically larger than the sample maximum, their estimation requires extrapolation methods. In the case of Weibull tail-distributions, classical extreme-value estimators are numerically outperformed by estimators dedicated to this set of light-tailed distributions. The latter estimators of extreme quantiles are based on two key quantities: an order statistic to estimate an intermediate quantile and an estimator of the Weibull tail-coefficient used to extrapolate. The common practice is to select the same intermediate sequence for both estimators. We show how an adapted choice of two different intermediate sequences leads to a reduction of the asymptotic bias associated with the resulting refined estimator. This analysis is supported by an asymptotic normality result associated with the refined estimator. A data-driven method is introduced for the practical selection of the intermediate sequences and our approach is compared to three estimators of extreme quantiles dedicated to Weibull tail-distributions on simulated data. An illustration on a real data set of daily wind measures is also provided.
Databáze: OpenAIRE