Chapter 4: Data Analysis and Exploration with Computational Approaches

Autor: Wichert, V., Bouwer, L., Abraham, N., Brix, H., Callies, U., González Ávalos, E., Marien, L., Matthias, V., Michaelis, P., Rabe, D., Rechid, D., Ruhnke, R., Scharun, C., Valizadeh, M., Vlasenko, A., Graf zu Castell-Rüdenhausen, W.
Jazyk: angličtina
Rok vydání: 2022
Zdroj: Integrating Data Science and Earth Science Challenges and Solutions
SpringerBriefs in Earth System Sciences
Popis: Artificial intelligence and machine learning (ML) methods are increasinglyappliedinEarthsystemresearch,forimprovingdataanalysis,andmodelperformance,andeventuallysystemunderstanding.IntheDigitalEarthproject,severalML approaches have been tested and applied, and are discussed in this chapter. These include data analysis using supervised learning and classification for detection of river levees and underwater ammunition; process estimation of methane emissions andforenvironmentalhealth;point-to-spaceextrapolationofvaryingobservedquantities; anomaly and event detection in spatial and temporal geoscientific datasets. We present the approaches and results, and finally, we provide some conclusions on the broad applications of these computational data exploration methods and approaches.
Databáze: OpenAIRE