Mycotoxins and female reproduction: in vitro approaches

Autor: Santos, R.R., Schoevers, E.J., Roelen, B.A.J., Fink-Gremmels, J.
Přispěvatelé: Biology of Reproductive Cells, Risk Assessment of Toxic and Immunomodulatory Agents, LS Pharma, Dep Gezondheidszorg Landbouwhuisdieren, Dep IRAS
Rok vydání: 2013
Popis: Exposure to mycotoxins has been linked to adverse effects on female reproduction by interfering with the synthesis, metabolism or degradation of steroid hormones, interaction with steroid receptors or impairing oocyte maturation and competence. To assess such effects, many studies initially focussed on possible endocrine actions of mycotoxins using specific cell lines known to express key enzymes involved in the synthesis of steroid hormones. Using these models, zearalenone, deoxynivalenol, ochratoxin A, T-2 and HT-2 toxins, and aflatoxin B-1 were claimed to be endocrine active substances. As yet, zearalenone is the only mycotoxin for which a direct interaction with oestrogen receptors could be demonstrated, classifying this mycotoxin as an endocrine disruptor. Mycotoxin exposure of complex cell systems like ovarian follicles at the earliest (primordial) to most advanced (pre-ovulatory) stages can serve not only as the first indication of the potential of a mycotoxin to affect female reproduction, but also provides insight in specific mechanisms involved in such an effect and identifies vulnerable phases in follicle development. Zearalenone is the most widely studied mycotoxin regarding female reproduction, but effects on oocyte maturation have also been demonstrated for deoxynivalenol. Exposure to zearalenone impairs the formation of primordial, while its metabolite a-zearalenol is more harmful to fertilised oocytes than zearalenone itself. This short overview aims to provide an introduction into the different models, such as cell lines and oocytes, commonly used to assess the potential adverse effects of mycotoxins on female reproduction.
Databáze: OpenAIRE