Popis: |
In this paper it is shown that under the random effects generalized partial credit model for the measurement of a single latent variable by a set of polytomously scored items, the joint marginal probability distribution of the item scores has a closed-form expression in terms of item category location parameters, parameters that characterize the distribution of the latent variable in the subpopulation of examinees with a zero score on all items, and item-scaling parameters. Due to this closed-form expression, all parameters of the random effects generalized partial credit model can be estimated using marginal maximum likelihood estimation without assuming a particular distribution of the latent variable in the population of examinees and without using numerical integration. Also due to this closed-form expression, new special cases of the random effects generalized partial credit model can be identified. In addition to these new special cases, a slightly more general model than the random effects generalized partial credit model is presented. This slightly more general model is called the extended generalized partial credit model. Attention is paid to maximum likelihood estimation of the parameters of the extended generalized partial credit model and to assessing the goodness of fit of the model using generalized likelihood ratio tests. Attention is also paid to person parameter estimation under the random effects generalized partial credit model. It is shown that expected a posteriori estimates can be obtained for all possible score patterns. A simulation study is carried out to show the usefulness of the proposed models compared to the standard models that assume normality of the latent variable in the population of examinees. In an empirical example, some of the procedures proposed are demonstrated. |