Molecular Dynamics Simulations of Cluster Impacts on Metallic Targets

Autor: Shapiro, Mark H., Tombrello, T. A.
Přispěvatelé: Daw, Murray S., Schlüter, Michael
Jazyk: angličtina
Rok vydání: 1990
Popis: A modified version of the multiple-interaction code SPUT2 has been used to simulate impacts of 63-atom Cu clusters on six–layer Cu targets. Simulations were carried out with cutoff times of 100 and 500 fs for an incident cluster energy of 63 keV (1 keV/atom). Significant enhancements were observed in the maximum potential and kinetic energies achieved in the early phase of the collision cascade. Some hard collisions yielded atoms with potential energies as high as 925 eV (in the CM frame). This is almost twice the energy allowed in an isolated two-body collision. The number of hard collisions per time-step vs potential energy is well-fitted with a decaying exponential, allowing extrapolation to higher energies. These results together with similar results for Al clusters impacting Au targets suggest that non-linear collisional effects cannot explain the high D–D fusion rates seen in Beuhler, Friedlander, and Friedman's recent experiment.
Databáze: OpenAIRE