Decision support system for assessment of patients with neurodegenerative disorders
Autor: | Bobić, Vladislava |
---|---|
Přispěvatelé: | Kvaščev, Goran, Popović, Dejan, Kostić, Vladimir, Đurović, Željko, Đurić-Jovičić, Milica |
Jazyk: | srbština |
Rok vydání: | 2021 |
Předmět: |
обрада сигнала
decision support system wearable sensors expert rules неуродегенеративне болести clinical assessment movement analysis Parkinson’s disease bradykinesia „носиви“ сензори машинско учење експертска правила клиничко праћење и евалуација стања machine learning neurodegenerative disorders систем за подршку одлучивању Паркинсонова болест анализа покрета signal processing брадикензија |
Zdroj: | Универзитет у Београду |
Popis: | Системи за подршку клиничком одлучивању представљају рачунарске алате који применом напредних технологија могу утицати на доношење одлука у вези са пацијентима. У овој дисертацији представљени су истраживање и развој новог система за подршку одлучивању, евалуацију и праћење стања пацијената оболелих од неуродегенеративних болести. Анализа клинички релевантних и свакодневних покрета чини основу овог система. Обрасци ових покрета снимљени су помоћу бежичних, носивих сензора малих димензија и тежине, који не захтевају компликовану поставку и могу се једноставно применити у било ком окружењу. Први део система намењен је (раном) препознавању Паркинсонове болести (ПБ) на основу анализе хода и алгоритама дубоког учења. Резултати су показали да је ПБ пацијенте могуће препознати са високом тачношћу. Други део система посвећен је праћењу симптома ПБ брадикинезије применом резоновања који се базира на знању. Представљена је метода за анализу покрета који се користе за евалуацију брадикинезије. Поред тога, применом различитих метода обраде сигнала развијена је нова метрика за квантификацију важних карактеристика ових покрета. Предикција степена развоја симптома се заснива на новом експертском систему који у потпуности објективизује клиничке евалуационе критеријуме. Валидација је урађена на примеру покрета тапкања прстију, који је снимљен на пацијенатима са типичним и атипичним паркинсонизимом. Показана је висока усаглашеност у поређењу са клиничким подацима. Развијени систем је објективан, аутоматизован, једноставно се користи, садржи интуитиван графички и параметарски приказ резултата и значајно доприноси унапређењу клиничких процедура за евалуацију и праћење стања пацијената са неуродегенеративним болестима. Clinical decision support system represents a computer-aided tool that utilizes advanced technologies for influencing clinical decisions about patients. This dissertation presents research and development of a new decision support system for the assessment of patients with neurodegenerative diseases. The analysis of movements that are part of standard clinical scales or everyday activities represents the basis of the system. These movements are recorded using small and lightweight wearable, wireless sensors, which do not require complicated setup and can be easily applied in any environment. The first part of system is dedicated to the (early) recognition of Parkinson’s disease (PD) based on gait analysis and deep learning algorithms. PD patients could be identified with a high accuracy. The other part of the system is dedicated to the assessment of PD symptoms, more specifically, bradykinesia, utilizing the knowledge-based reasoning. A method for analysis of bradykinesia related movements is defined and presented. Moreover, by applying different signal processing techniques, new metrics have been developed to quantify the essential characteristics of these movements. The prediction of symptom severity was performed using new expert system that completely objectified the clinical evaluation criteria. Validation was performed on the example of the finger-tapping movement of patients with typical and atypical parkinsonism. A high compliance rate was obtained compared to clinical data. The developed system is objective, automated, easy to use, contains an intuitive graphical and parametric presentation of results, and significantly contributes to the improvement of clinical assessment of patients with neurodegenerative diseases. |
Databáze: | OpenAIRE |
Externí odkaz: |