Popis: |
We focus on two complexity measures of words that are invariant under the operation of reversal of a word: the palindromic defect and the MP-ratio.The palindromic defect of a given word w is dened by jwj + 1 jPal(w)j, where jPal(w)j denotes the number of palindromic factors of w. We study innite words, to which this de nition can be naturally extended. There are many results in the literature about the so- called rich words (words of defect 0), while words of nite positive defect have been studied signicantly less; for some time (until recently) it was not known whether there even exist such words that additionally are aperiodic and have their set of factors closed under reversal. Among the rst examples that appeared were the so-called highly potential words. In this thesis we present a much more general construction,which gives a wider class of words, named generalized highly potential words, and analyze their signicance within the frames of combinatorics on words.The MP-ratio of a given n-ary word w is dened as the quotient jrwsj jwj ,where r and s are words such that the word rws is minimal- palindromic and that the length jrj + jsj is minimal possible; here, an n-ary word is called minimal-palindromic if it does not contain palindromic subwords of length greater than jwj n . In the binary case, it was proved that the MP-ratio is well-dened and that it is bounded from above by 4, which is the best possible upper bound. The question of well- denedness of the MP-ratio for larger alphabets was left open. In this thesis we solve that question in the ternary case: we show that the MP-ratio is indeed well-dened in the ternary case, that it is bounded from above by the constant 6 and that this is the best possible upper bound. Izucavamo dve mere slozenosti reci koje su invarijantne u odnosu na operaciju preokretanja reci: palindromski defekt i MP-razmeru date reci.Palindromski defekt reci w denise se kao jwj + 1 jPal(w)j, gde jPal(w)j predstavlja broj palindromskih faktora reci w. Mi izucavamo beskonacne reci, na koje se ova denicija moze prirodno prosiriti. Postoje mnogobrojni rezultati u vezi sa tzv. bogatim recima (reci cije je defekt 0), dok se o recima sa konacnim pozitivnim defektom relativno malo zna; tokom jednog perioda (donedavno) nije bilo poznato ni da li uopste postoje takve reci koje su,dodatno, aperiodi cne i imaju skup faktora zatvoren za preokretanje. Medu prvim primerima koji su se pojavili u literaturi su bile tzv. visokopotencijalne reci. U disertaciji cemo predstaviti znatno opstiju konstrukciju, kojom se dobija znacajno sira klasa reci, nazvanih uop stene visokopotencijalne reci, i analiziracemo njihov znacaj u okvirima kombinatorike na recima.MP-razmera date n-arne reci w denise se kao kolicnik jrwsj jwj , gde su r i s takve da je rec rws minimalno-palindromicna, i duzina jrj + jsj je najmanja moguca; ovde, za n-arnu rec kazemo da je minimalno-palindromicna ako ne sadrzi palindromsku podrec duzine vece od jwj n . U binarnom slucaju dokazano je da je MP-razmera dobro denisana i da je ogranicena odozgo konstantom 4, sto je i najbolja moguca granica. Dobra denisanost MP-razmere za vece alfabete je ostavljena kao otvoren problem. U ovoj tezi resavamo taj problem u ternarnom slucaju: pokazacemo da MP- razmera jeste dobro de-nisana u ternarnom slucaju, da je ogranicena odozgo sa 6, i da se ta granica ne moze poboljsati. |