In vivo proton T1 relaxation times of mouse myocardial metabolites at 9.4 T

Autor: Bakermans, A.J., Abdurrachim, D., Geraedts, T.R., Houten, S.M., Nicolay, K., Prompers, J.J.
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Magnetic Resonance in Medicine, 73(6), 2069-2074. Wiley
ISSN: 0740-3194
Popis: Purpose Proton magnetic resonance spectroscopy (1H-MRS) for quantitative in vivo assessment of mouse myocardial metabolism requires accurate acquisition timing to minimize motion artifacts and corrections for T1-dependent partial saturation effects. In this study, mouse myocardial water and metabolite T1 relaxation time constants were quantified. Methods Cardiac-triggered and respiratory-gated PRESS-localized 1H-MRS was employed at 9.4 T to acquire signal from a 4-μL voxel in the septum of healthy mice (n=10) while maintaining a steady state of magnetization using dummy scans during respiratory gates. Signal stability was assessed via standard deviations (SD) of zero-order phases and amplitudes of water spectra. Saturation-recovery experiments were performed to determine T1 values. Results Phase SD did not vary for different repetition times (TR), and was 13.1°±4.5°. Maximal amplitude SD was 14.2%±5.1% at TR=500 ms. Myocardial T1 values (mean±SD) were quantified for water (1.71±0.25 s), taurine (2.18±0.62 s), trimethylamine from choline-containing compounds and carnitine (1.67±0.25 s), creatine-methyl (1.34±0.19 s), triglyceride-methylene (0.60±0.15 s), and triglyceride-methyl (0.90±0.17 s) protons. Conclusion This work provides in vivo quantifications of proton T1 values for mouse myocardial water and metabolites at 9.4 T. Magn Reson Med 73:2069-2074, 2015.
Databáze: OpenAIRE