High accuracy semidefinite programming bounds for kissing numbers

Autor: Mittelmann, H.D., Vallentin, Frank
Přispěvatelé: Networks and Optimization
Rok vydání: 2010
Předmět:
Zdroj: Experimental Mathematics, 19, 174-178
ISSN: 1058-6458
Popis: The kissing number in n-dimensional Euclidean space is the maximal number of non-overlapping unit spheres which simultaneously can touch a central unit sphere. Bachoc and Vallentin developed a method to find upper bounds for the kissing number based on semidefinite programming. This paper is a report on high accuracy calculations of these upper bounds for n
Databáze: OpenAIRE