Convex and monotonic bootstrapped kriging

Autor: Kleijnen, Jack P.C., Mehdad, E., van Beers, W.C.M., Laroque, C., Himmelspach, J., Pasupathy, R., Rose, O., Uhrmacher, A.M.
Přispěvatelé: Research Group: Operations Research
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Zdroj: Proceedings of the 2012 Winter Simulation Conference, 543-554
STARTPAGE=543;ENDPAGE=554;TITLE=Proceedings of the 2012 Winter Simulation Conference
Popis: Distribution-free bootstrapping of the replicated responses of a given discrete-event simulation model gives bootstrapped Kriging (Gaussian process) metamodels; we require these metamodels to be either convex or monotonic. To illustrate monotonic Kriging, we use an M/M/1 queueing simulation with as output either the mean or the 90% quantile of the transient-state waiting times, and as input the traffic rate. In this example, monotonic bootstrapped Kriging enables better sensitivity analysis than classic Kriging; i.e., bootstrapping gives lower MSE and confidence intervals with higher coverage and the same length. To illustrate convex Kriging, we start with simulation-optimization of an (s, S) inventory model, but we next switch to a Monte Carlo experiment with a second-order polynomial inspired by this inventory simulation. We could not find truly convex Kriging metamodels, either classic or bootstrapped; nevertheless, our bootstrapped “nearly convex” Kriging does give a confidence interval for the optimal input combination.
Databáze: OpenAIRE